
    

 

MeshCentral2 
 

 
 

MeshCentral2 

Installer’s Guide
 

 

 
 
 
 
 
 
 

Version 0.1.0 
November 28, 2020 
Ylian Saint-Hilaire 
 



    

  ii 

Table of Contents 
 
1. Abstract ................................................................................................................................... 1 
2. Quick Start .............................................................................................................................. 1 
3. Windows Installation ............................................................................................................... 2 

3.1 Windows Installation Tool ................................................................................................ 2 
3.2 NPM Installation for Advanced Users .............................................................................. 3 
3.3 Windows Defender Firewall Settings ............................................................................... 5 

3.3.1 Editing the existing rules .......................................................................................... 6 
3.3.2 Add new firewall rules .............................................................................................. 7 

4. Amazon Linux 2 ...................................................................................................................... 8 
4.1 Getting the AWS instance setup ...................................................................................... 8 
4.2 Installing NodeJS ............................................................................................................. 9 
4.3 Installing MongoDB.......................................................................................................... 9 
4.4 Port permissions ............................................................................................................ 10 
4.5 Installing MeshCentral ................................................................................................... 10 
4.6 Configuring for MongoDB .............................................................................................. 11 
4.7 Manually starting the server .......................................................................................... 12 
4.8 Automatically starting the server ................................................................................... 13 

5. Raspberry Pi ......................................................................................................................... 14 
5.1 Installing NodeJS ........................................................................................................... 14 
5.2 Port permissions ............................................................................................................ 14 
5.3 Installing MeshCentral ................................................................................................... 15 
5.4 Configuring for LAN-only mode ..................................................................................... 16 
5.5 Manually starting the server .......................................................................................... 17 
5.6 Automatically starting the server ................................................................................... 17 

6. Ubuntu 18.04 ........................................................................................................................ 18 
6.1 Installing NodeJS ........................................................................................................... 18 
6.2 Installing MongoDB........................................................................................................ 19 
6.3 Port permissions ............................................................................................................ 19 
6.4 Installing MeshCentral ................................................................................................... 19 
6.5 Configuring for MongoDB .............................................................................................. 21 
6.6 Manually starting the server .......................................................................................... 22 
6.7 Automatically starting the server ................................................................................... 22 
6.8 Increased Security Installation ....................................................................................... 23 

7. Microsoft Azure ..................................................................................................................... 24 
8. Google Cloud ........................................................................................................................ 27 
9. Ubuntu 16.04 ........................................................................................................................ 30 

9.1 Installing NodeJS ........................................................................................................... 30 
10. OpenBSD 6.4 ..................................................................................................................... 31 

10.1 Installing MongoDB........................................................................................................ 31 
10.2 Installing NodeJS ........................................................................................................... 31 
10.3 Installing MeshCentral ................................................................................................... 31 

 



    

  iii 

Document Changes 
 
 
July 20, 2018 – 0.0.1 
 Initial version with Amazon Linux 2, Raspberry Pi and Ubuntu 18.04. 
 
July 21, 2018 – 0.0.2 
 Added Microsoft Azure using Ubuntu. 
 
July 23, 2018 – 0.0.3 
 Added Google Cloud. 
 
July 31, 2018 – 0.0.4 
 Added a section on a better and more secure way to install on Ubuntu. 
 
December 7, 2018 – 0.0.5 
 Many fixes to Ubuntu installation. 
 
February 21, 2019 – 0.0.6 
 Moved Windows installation to this document. Made some fixes. 
 
May 7, 2019 – 0.0.7 
 More fixes and added OpenBSD section. 
 
August 2nd, 2019 – 0.0.8 
 Fixed how node port permissions are set. 
 
August 23rd, 2019 – 0.0.9 
 Added Windows Defender Firewall instructions. 
 
November 28, 2020 – 0.1.0 
 Corrections to how Windows installation is done.



    

  1 

1. Abstract 

 
This guide is specifically intended to help users install MeshCentral from start to finish. Once 
installed, you can take a look at the MeshCentral user’s guide for information on how to configure 
MeshCentral for your specific use. In this document, we will look at installing MeshCentral on AWS 
Linux, Raspberry Pi and Ubuntu. 
 

2. Quick Start 

 
For some who want to skip this document entirely, there are quick install scripts that will get a 
MeshCentral2 instance up and running on Linux in a few minutes. These scripts will pretty much 
do what this document explains very rapidly. Right now, there are two such scripts available: 
 
Amazon Linux 2 
 
For Amazon EC2 users, that want to manage 100 devices or less. Launch a t3.nano or t3.micro 
EC2 instance with Amazon Linux 2 with TCP ports 22 (SSH), 80 (HTTP), 443 (HTTPS) and 4433 
(CIRA) open. Then login as “ec2-user” and enter the following commands: 
 

wget http://info.meshcentral.com/scripts/mc-aws-linux2.sh 

chmod 755 mc-aws-linux2.sh 

./mc-aws-linux2.sh 

 
This will download the fast install script and once run, will install nodejs, meshcentral, setup 
systemd and start the server. For a larger instance like a t3.small, t3.medium or larger you can run 
the following that does the same but also installs MongoDB. 
 

wget http://info.meshcentral.com/scripts/mc-aws-linux2-mongo.sh 

chmod 755 mc-aws-linux2-mongo.sh 

./mc-aws-linux2-mongo.sh 

 
After these scripts are run, try accessing the server using a browser. MeshCentral will take a minute 
or two to create certificates after that, the server will be up. The first account to be created will be 
the site administrator – so don’t delay and create an account right away. Once running, move on 
to the MeshCentral’s user’s guide to configure your new server. 
 
Microsoft Azure 
 
For 100 devices or less, launch an instance of Ubuntu 18.04 using a small B1s instance. Set the 
username to “default” in all lower case and open ports 22, 80, 443 and 3389 using the basic network 
profile. Then start the instance and run the following lines. 
 

wget http://info.meshcentral.com/scripts/mc-azure-ubuntu1804.sh 

chmod 755 mc-azure-ubuntu1804.sh 

./mc-azure-ubuntu1804.sh 

 
In this situation, port 3389 will be used to receive Intel AMT CIRA connections instead of port 4433. 
After these scripts are run, try accessing the server using a browser. MeshCentral will take a minute 
or two to create certificates after that, the server will be up. The first account to be created will be 
the site administrator – so don’t delay and create an account right away. Once running, move on 
to the MeshCentral’s user’s guide to configure your new server. 

http://info.meshcentral.com/scripts/mc-aws-linux2.sh
http://info.meshcentral.com/scripts/mc-aws-linux2-mongo.sh
http://info.meshcentral.com/scripts/mc-azure-ubuntu1804.sh


    

  2 

 

3. Windows Installation 

MeshCentral is constructed entirely with NodeJS, an asynchronous event driven JavaScript 
runtime (https://nodejs.org/). A basic understanding on NodeJS may be preferable but not 
compulsory. MeshCentral server which heavily relies on NodeJS runtime will be able run on 
almost any computing platform with contemporary operating systems including Windows*, Linux* 
and macOS*. 
 
There are two ways to get MeshCentral setup.  

• For Linux*, macOS*, or advanced users can use CLI based NPM tool. 

• For Windows users, you can use the MeshCentral installation tool.  
 

3.1 Windows Installation Tool 

The MeshCentral installer tool for Microsoft Windows can be downloaded at 
www.meshcommander.com/meshcentral2 or by clicking this link. This tool will automatically 
detect and install NodeJS if needed. NodeJS will be downloaded from https://nodejs.org checked 
and installed. We recommend the installer be run on a modern version of Windows (.e.g. Win8.1, 
Win10, Win Server 2012* or better) 
  

 
During installation, the installation tool will prompt for the following settings: 
 

• Multi-user Server : By enabling this option, the server will be open to any user with a 
web browser app. Users will be able to create accounts and start managing computers 
associated in their respective accounts.  
 
Note: If this option is disabled (unchecked), the server will run as a single-user server, no 
login screen will be presented and MeshCentral application will be limited to the server 
host machine only. 
 

• Auto-update Server: By enabling this option, the server will check new version releases 
daily and perform automatic update.  
 

https://nodejs.org/
http://www.meshcommander.com/meshcentral2
http://info.meshcentral.com/downloads/MeshCentral2/MeshCentralInstaller.exe
https://nodejs.org/


    

  3 

Note: Update check occurs at 0000 between 0100 hours (local time). During update, the 
server will not be accessible until update is completed.  
 

• Server Modes, LAN, WAN or Hybrid:  
 
LAN mode: Recommended for small installation within a local network. Server host does 
not need a fixed IP address or DNS record to operate.  
 
WAN or Hybrid modes: Server host will require a fixed IP address or DNS record to 
function correctly. If selected, user will need to enter server’s DNS name or static IP 
address in the “Server Name” field. This name or IP address will be used by browsers 
and agents to connect back to the server, this name MUST be correct or the server will 
not work. If you do not have a fixed name, select LAN mode to get started. 
 

Acquiring a static IP or DNS record is beyond the scope of this document. Please seek advice or 
consult your network administrator if unsure. If unsure, leave the settings as default (as-is) and 
proceed setup in LAN mode to manage computers that reside within the same network. 
 
Once installed MeshCentral will run as a background Windows Service and can be accessed 
using a web browser with the link provided by the installer. 
 
The installation tool can be run again to perform server update, re-installation or un-installation. 
When performing an update check, the tool will look at the currently installed version and 
compare it to the one present on NPM. 
 

 
 
By default, MeshCentral will use TCP ports 80 (HTTP), 443 (HTTPS) and 4433 (Intel® AMT 
CIRA). The installer will add Windows Defender Firewall rules to allow incoming connections on 
these ports. In addition, if the server is in LAN or Hybrid mode, an addition rule on UDP port 
16990 is added to allow for server discovery. 
 

3.2 NPM Installation for Advanced Users 

 
For advanced users or administrators, MeshCentral can be installed with NPM, a NodeJS 
package manager that can be accessed via web browser (https://www.npmjs.com/) or command 
line tool, “npm”.  
 

https://www.npmjs.com/


    

  4 

 
 

Note: As a prerequisite, NodeJS and NPM must be installed on host OS and HTTP/HTTPS proxy 
settings maybe required if server host resides behind a HTTP proxy server.  
 

1. To begin, start a command line terminal (Windows Command Prompt or Linux Terminal) 
and type the following to verify if nodeJS and npm has been installed correctly as shown 
below  
a. To check on nodeJS installed version, type “node –v” and hit “enter” key 
b. To check on npm installed version, type “npm –v” and hit “enter” key 
 

2. If MeshCentral installation is performed on a server host that resides behind a HTTP 
proxy, NPM’s proxy settings must be updated with respective proxy settings associated 
with the network environment. Skip this step if not applicable.  

 
.e.g. for http proxy “npm config set proxy http://proxy.com:88” 

.e.g. for https proxy “npm config set https-proxy http://proxy.com:88” 

 
3. Create a new directory “MeshCentral” and run the NPM install command as shown 

below: 
 

mkdir meshcentral 

cd meshcentral 

npm install meshcentral 

 

 
 

4. Upon download completion, the server can be started with the commands below: 
 

node node_modules/meshcentral [arguments] 

 

 

Do not use “sudo” in front of “npm install meshcentral”.  

Do not run MeshCentral by going into the “node_modules/meshcentral” folder as 
this may cause auto-install and self-update features to fail. Instead, go into the 
directory above “node_modules” and run “node node_modules/meshcentral”. 
“f 



    

  5 

 
 

Note: If MeshCentral is started without any arguments, default settings in LAN-only mode will be 
in effect and user/administrator will only be able to manage computers that reside within the local 
network. 
 

5. To manage computers over the internet, the server needs to have static IP settings or a 
DNS record that resolves back to the right server. The mesh agents will be using the 
mechanism to call home to MeshCentral server. For WAN or Hybrid mode, run one of the 
commands below 

 
node node_modules/meshcentral --cert servername.domain.com 

node node_modules/meshcentral --cert hostname.domain.com 

node node_modules/meshcentral --cert 1.2.3.4 

 
Note: On first attempt running on WAN or Hybrid Mode,  

• Certificates will be generated for the first time and this may take a few minutes to 
complete.  

 

 
 

• User is advised to create an “admin” account immediately by navigating to 
https://127.0.0.1 with a web browser.  

 
 
Note: To run MeshCentral as a service, run it using "--install" argument. Once running, start a 
web browser and access MeshCentral application with respective URL. 
 

3.3 Windows Defender Firewall Settings 

 
On Windows, the built-in firewall will need to be configured to allow TCP ports 80, 443 and 4433 
and sometimes UDP port 16990. The MeshCentral Windows Installer will add incoming rules for 
these ports automatically. If using the advanced NPM installation or when changing the default 
ports, it may be needed to add or edit these firewall rules. In this section we look at how to do this. 
 
To get started, we need to go in the control panel, click “System and Security” then “Windows 
Defender Firewall” and “Advanced Settings” on the left side then click on “Inbound rules”. This will 
get us on the right place to add or edit firewall rules. 

At this point, no user account will be created or available for the user hence 1st user 
account will be the most privileged user with Administrator rights  

 



    

  6 

 
If the MeshCentral Windows Installer was used, the “MeshCentral Server TCP ports” and optionally 
“MeshCentral Server UDP ports” rules should already be present. 

3.3.1 Editing the existing rules 

 
To edit an existing rule, simply double click on it. To change the allowed inbound ports, go to the 
“Protocols and Ports” tab and change the local ports. 
 

 
 



    

  7 

3.3.2 Add new firewall rules 

 
To add a new firewall rule, click on the “New Rule…” then select “Port” and ok. TCP or UDP and 
enter the specific local ports needed and ok. Then click ok twice, enter the rule name and ok again. 
 

 
Typically, inbound TCP ports 80, 443 and 4433 are used, but the rule can be added with different 
ports as needed. 
 



    

  8 

4. Amazon Linux 2 

 
In this section, we will look at installing MeshCentral on Amazon AWS with “Amazon Linux 2”. 
This is a low cost instance and a free tier is available so you can experiment or run a small 
instance of MeshCentral and it will work perfectly fine. 

4.1 Getting the AWS instance setup 

On AWS EC2, you can launch an instance and select “Amazon Linux 2”. In this case, it’s the first 
option available. 
 

 
 
When launching a new instance, you are asked to use or create a security group with the allowed 
inbound TCP and UDP ports. The security group should look like this: 
 

Type Protocol Port Range Source Description 

SSH TCP 22 Anywhere SSH 

HTTP TCP 80 Anywhere HTTP 

HTTPS TCP 443 Anywhere HTTPS 

Custom TCP Rule TCP 4433 Anywhere Intel AMT CIRA 

Custom TCP Rule TCP 8080 Anywhere Swarm Server* 

 
All security group rules should have a source of “0.0.0.0/0” and “::/0”. The last rule for port 8080 is 
only needed if migrating from a MeshCentral1 server, most people don’t need it and should not be 
added. 
 
If you are not going to be managing Intel AMT computers, you can remove port 4433. One can also 
remove port 80, however it’s needed to get a Let’s Encrypt certificate and useful to route users from 
the HTTP to the HTTPS web page. 
 



    

  9 

For all the following sections, we assume that we are in the “ec2-user” home path. You can do:  
 

cd ~ 

 
This will change the current path to the home folder.  
 

4.2 Installing NodeJS 

 
To get started, launch an instance and start a SSH session to it. You can 
use SSH on Linux or Putty on Windows to login to the AWS instance. 
 
The first thing to do is get NodeJS installed on the instance. We will be 
installing a long term support (LTS) version of NodeJS. Additional 
information on how to do this can be found here. We first install the node 
version manager then activate it and install the NodeJS LTS. It’s done with 3 commands: 
 

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.8/install.sh | bash 

. ~/.nvm/nvm.sh 

nvm install --lts 

 
We can test what version of NodeJS is installed using: 
 

node -v 

 

4.3 Installing MongoDB 

 
If we are going to run a large instance, it’s best to use MongoDB 
as the database. If you are using a small instance, you can skip 
installing MongoDB and MeshCentral will use NeDB instead 
which is a light weight database that is probably great for 
managing less than 100 computers. 
 
If you want to use MongoDB, we can install MongoDB Community Edition. More information on 
how to do this can be found here. 
 
Using “nano” create the file “/etc/yum.repos.d/mongodb-org-4.0.repo”: 
 

sudo nano /etc/yum.repos.d/mongodb-org-4.0.repo 

 
Then, put this in it: 
 

[mongodb-org-4.0] 

name=MongoDB Repository 

baseurl=https://repo.mongodb.org/yum/amazon/2/mongodb-org/4.0/x86_64/ 

gpgcheck=1 

enabled=1 

gpgkey=https://www.mongodb.org/static/pgp/server-4.0.asc 

 

This file will setup the repository that we will be using to bet MongoDB. Once done, you can install 
the package using yum and get it started like this: 
 

sudo yum install -y mongodb-org 

sudo service mongod start 

 

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-amazon/


    

  10 

To verify that MongoDB is running, you can enter the MongoDB shell like this: 
 

mongo --host 127.0.0.1:27017 

 
You can leave the shell using Ctrl-C. The database and log files will be create at these locations: 
 

/var/log/mongodb 

/var/lib/mongo 

 
This is useful to know if you want to make a backup of the database file. 
 

4.4 Port permissions 

 
On Linux, ports below 1024 are reserved for the “root” user. This is a security feature. In our case 
MeshCentral will need to listen to ports 80 and 443. To allow this, we need to allow node to listen 
to ports below 1024 like this: 
 

whereis node 

node: /home/ec2-user/.nvm/versions/node/v8.11.3/bin/node 

 

sudo setcap cap_net_bind_service=+ep /home/ec2-user/.nvm/versions/node/v8.11.3/bin/node 

 
We first locate the node binary, using “whereis node”, we then use the “setcap” command to add 
permissions to node. Note that we take the path given by whereis and place it in the setcap 
command. The “setcap” command will set permissions allowing node to use ports 1024 and below. 
This permission may be lost when updating the Linux kernel, so this command may need to be 
applied again in some case. 
 

4.5 Installing MeshCentral 

 
It’s almost time to install MeshCentral but first, we need to know the public name of our AWS 
instance, you can run the following command: 
 

curl http://169.254.169.254/latest/meta-data/public-hostname 

 
It will return the public name of the AWS instance, for example: 
 

ec2-1-2-3-4.us-west-2.compute.amazonaws.com 

 
You can use this name, or if you have another registered DNS name pointing to the server instance, 
you can also use that now. Note that you must setup any alternative name on your own, 
MeshCentral will not do this for you. This name must be correct and must resolve to this AWS 
instance as all mesh agents will use this name to connect back to this server. 
 
Now, we can use the node package manager (NPM) to install MeshCentral. 
 

npm install meshcentral 

 

 
 
After that, we can run MeshCentral for the first time. We want to run in WAN-only mode since we 
will not be managing any computers on the same local network at this server. We also want to 

Do not use “sudo” in front of “npm install meshcentral”.  



    

  11 

create a server with a certificate name that is the same at the AWS instance name. So, we will use 
“--wanonly” and “--cert [name]” arguments to get the server started. For example: 
 

node ./node_modules/meshcentral --wanonly --cert ec2-1-2-3-4.us-west-2.compute.amazonaws.com 

 
At this point, the server will create its certificates and start running. 
 

MeshCentral HTTP redirection web server running on port 80. 

Generating certificates, may take a few minutes... 

Generating root certificate... 

Generating HTTPS certificate... 

Generating MeshAgent certificate... 

Generating Intel AMT MPS certificate... 

Generating Intel AMT console certificate... 

MeshCentral Intel(R) AMT server running on ec2-54-245-141-130.us-west-2.compute.amazonaws.com:4433. 

MeshCentral HTTPS web server running on ec2-54-245-141-130.us-west-2.compute.amazonaws.com:443. 

Server has no users, next new account will be site administrator. 

 
You can now open a browser to the name of the server, for example: 
 

https://ec2-1-2-3-4.us-west-2.compute.amazonaws.com 

 
You will see the server working as expected. You will get a certificate error since the server is used 
an untrusted certificate for now. Just ignore the error and see the MeshCentral User’s Guide to fix 
this. 
 

 
 
At this point, the server is usable but, there are two things that may still need to be done. First, if 
we opted to use MongoDB, we have to configure MeshCentral to use a MongoDB database. By 
default, NeDB will be used which should only be used for small deployments managing less than 
100 computers. We also need to automatically start the server when the AWS instance starts. 
 
To continue, stop the MeshCentral server with CTRL-C. 
 

4.6 Configuring for MongoDB 

 



    

  12 

By default, MeshCentral uses NeDB with a database file located in ~/meshcentral-
data/meshcentral.db. This is great for small servers, but if we opted to install MongoDB, let’s make 
use of it. We need to edit the config.json file located in the meshcentral-data folder. 
 
 nano ~/meshcentral-data/config.json 

 
Then, make the start of the file look like this: 
 

{ 

  "settings": { 

    "MongoDb": "mongodb://127.0.0.1:27017/meshcentral", 

    "WANonly": true, 

    "_Port": 443, 

    "_RedirPort": 80, 

    "_AllowLoginToken": true, 

    "_AllowFraming": true, 

    "_WebRTC": false, 

    "_ClickOnce": false, 

    "_UserAllowedIP" : "127.0.0.1,::1,192.168.0.100" 

  }, 

… 

} 

 
If you start with the default config.json created by MeshCentral, you will need to remove some “_” 
characters in front of settings, mongodb and wanonly. You can also add a “_” to other values. 
 
You can then same the same and run MeshCentral again. This time, you don’t need to specify the 
certificate name or --wanonly. You just need to run it like this: 
 

node ./node_modules/meshcentral 

 
The server should now run correctly and use MongoDB. You can even delete the file 
~/meshcentral-data/meshcentral.db as it’s not going to be used anymore. You can check that it 
runs correctly by browsing to the server’s address again and creating a new account. The first 
account that is created will be administrator for the server, so don’t delay and create the first 
account right away. 
 
Once you are done, we can stop the server again using CTRL-C and in the next sections, we will 
look at starting the server in the background. 
 

4.7 Manually starting the server 

 
We can manually start and stop the MeshCentral server in the background in different ways. In this 
section, we are going to create two commands “mcstart” and “mcstop” to take care of this. Type 
this to create the two commands: 
 

echo "node ./node_modules/meshcentral > stdout.txt 2> stderr.txt &" > mcstart 

chmod 755 mcstart 

 

echo "pkill –f node_modules/meshcentral" > mcstop 

chmod 755 mcstop 

 
You can now run the “./mcstart” command to launch the server in the background and stop it using 
the “./mcstop” to stop it. This should work pretty well, but if the AWS instance is ever stopped and 
started again, the server will not automatically launch. 



    

  13 

 

4.8 Automatically starting the server 

 
Since Amazon Linux 2 supports systemd, we are going to use that to auto-start MeshCentral in the 
background. First, we need to know our own username and group. If we do “ls -l” in our home folder 
we get for example: 
 

drwxr-xr-x   2 default default 4096 Jul 20 00:03 Desktop 

drwxr-xr-x   2 default default 4096 Jul 20 00:03 Documents 

drwxr-xr-x   2 default default 4096 Jul 20 00:03 Downloads 

… 

 
Note the username and group name, in this example it’s “default” for both. We need this information 
to create the system service description file. To create this file type: 
 

sudo pico /etc/systemd/system/meshcentral.service 

 
Then enter the following lines: 
 

[Unit] 

Description=MeshCentral Server 

 

[Service] 

Type=simple 

LimitNOFILE=1000000 

ExecStart=/usr/bin/node /home/default/node_modules/meshcentral 

WorkingDirectory=/home/default 

Environment=NODE_ENV=production 

User=default 

Group=default 

Restart=always 

# Restart service after 10 seconds if node service crashes 

RestartSec=10 

# Set port permissions capability 

AmbientCapabilities=cap_net_bind_service 

 

[Install] 

WantedBy=multi-user.target 

 
Note that the user and group values have to be set correctly for your specific situation. Also, the 
ExecStart and WorkingDirectory lines includes the path to the user’s home folder which includes 
the username in it. Make sure that is set correctly. 
 
Once this is done, you can now start, enable, stop and disable using the following commands: 
 

sudo systemctl enable meshcentral.service 

sudo systemctl start meshcentral.service 

sudo systemctl stop meshcentral.service 

sudo systemctl disable meshcentral.service 

 
Type in the first two commands to start and enable the service. Enabling the service will make it 
automatically start when the computer restarts. 
 



    

  14 

Once the server is launched, you can access it using a web browser as before. From this point 
on, refer to the MeshCentral User’s Guide for information on how to configure and use 
MeshCentral. 
 
 

5. Raspberry Pi 

 
In this section, we will look at installing MeshCentral on the famous Raspberry Pi. This computer’s 
low price makes it a perfect always-on system for managing computers on a home or small 
business network. This installation will work on any version of the Raspberry Pi, but version 3 
certainly much faster. 
 

 
 
For this installation, we are going to use the Raspbian operating system. You can use the 
NOOBS version to install this operating system on your Raspberry Pi and install Raspbian. For 
best performance you can use the “Raspbian Stretch Lite” image which is much smaller and does 
not have the X desktop interface. To keep things even smaller, we are not going to be installing 
MongoDB, instead we are just going to be using NeBD as a database that comes by default with 
MeshCentral. 

5.1 Installing NodeJS 

 
Start by opening a terminal. For all of the installation, we will assume we are the default “pi” user 
and we are in the home (~) folder. Let’s get started by installing NodeJS. 
 

sudo apt-get update 

sudo apt-get dist-upgrade 

curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash 

sudo apt-get -y install nodejs 

 
We can now check what version of Node was installed by typing: 
 
 node -v 

 
If all goes well, we can now move on to port permissions and installing MeshCentral itself. 
 

5.2 Port permissions 

 



    

  15 

On Linux, ports below 1024 are reserved for the “root” user. This is a security feature. In our case 
MeshCentral will need to listen to ports 80 and 443. To allow this, we need to allow node to listen 
to ports below 1024 like this: 
 

whereis node 

node: /usr/bin/node /usr/include/node /usr/share/man/man1/node.1.gz 

 

sudo setcap cap_net_bind_service=+ep /usr/bin/node 

 
We first locate the node binary, using “whereis node”, we then use the “setcap” command to add 
permissions to node. Note that we take the path given by whereis and place it in the setcap 
command. The “setcap” command will set permissions allowing node to use ports 1024 and below. 
This permission may be lost when updating the Linux kernel, so this command may need to be 
applied again in some case. 
 

5.3 Installing MeshCentral 

 
Now, we can use the Node Package Manager (NPM) to install MeshCentral. 
 

npm install meshcentral 

 

 
 
After that, we can run MeshCentral for the first time. We want to run in WAN-only mode since we 
will not be managing any computers on the same local network at this server. We also want to 
create a server with a certificate name that is the same at the AWS instance name. So, we will use 
“--wanonly” and “--cert [name]” arguments to get the server started. For example: 
 

node node_modules/meshcentral --lanonly --fastcert 

 
At this point, the server will create its certificates and start running. 
 

MeshCentral HTTP redirection web server running on port 80. 

Generating certificates, may take a few minutes... 

Generating root certificate... 

Generating HTTPS certificate... 

Generating MeshAgent certificate... 

Generating Intel AMT MPS certificate... 

Generating Intel AMT console certificate... 

Server name not configured, running in LAN-only mode. 

MeshCentral HTTPS web server running on port 443. 

Server has no users, next new account will be site administrator. 

 
The next step is to get the IP address of the Raspberry Pi. Use “ipconfig”: 
 

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500 

        inet 192.168.2.162  netmask 255.255.255.0  broadcast 192.168.2.255 

        inet6 fe80::8841:34b7:685:14a7  prefixlen 64  scopeid 0x20<link> 

        ether b8:27:eb:01:13:3f  txqueuelen 1000  (Ethernet) 

        RX packets 58325  bytes 72302196 (68.9 MiB) 

        RX errors 0  dropped 271  overruns 0  frame 0 

        TX packets 28457  bytes 3576126 (3.4 MiB) 

        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0 

 
You can now open a browser to the name of the server, for example: 
 

https://192.168.2.162 

 

Do not use “sudo” in front of “npm install meshcentral”.  

https://192.168.2.162/


    

  16 

You will see the server working as expected. You will get a certificate error since the server is used 
an untrusted certificate for now. Just ignore the error and see the MeshCentral User’s Guide to fix 
this. 
 

 
 

5.4 Configuring for LAN-only mode 

 
By default, MeshCentral will assume that you are managing devices both on a local network and 
on the internet. In the case of this Raspberry Pi installation, we only want to manage device on the 
local network and so, we can configure MeshCentral to do this. It will adapt the server for this 
usages. To do this, edit the config.json file: 
 
 pico ~/meshcentral-data/config.json 

 
Then, make the start of the file look like this: 
 

{ 

  "settings": { 

    "LANonly": true, 

    "FastCert": true, 

    "_Port": 443, 

    "_RedirPort": 80, 

    "_AllowLoginToken": true, 

    "_AllowFraming": true, 

    "_WebRTC": false, 

    "_ClickOnce": false, 

    "_UserAllowedIP" : "127.0.0.1,::1,192.168.0.100" 

  }, 

… 

} 

 

While we are at it, we can put “FastCert” to true so that RSA2048 certificates are created instead 
of RSA3072. This is less secure but runs much faster on small processors like the Raspberry Pi. 
This is the same as specifying “--fastcert" in the prior section. 
 



    

  17 

 

 

5.5 Manually starting the server 

 
We can manually start and stop the MeshCentral server in the background in different ways. In this 
section, we are going to create two commands “mcstart” and “mcstop” to take care of this. Type 
this to create the two commands: 
 

echo "node ./node_modules/meshcentral > stdout.txt 2> stderr.txt &" > mcstart 

chmod 755 mcstart 

 

echo "pkill -f node_modules/meshcentral" > mcstop 

chmod 755 mcstop 

 
You can now run the “./mcstart” command to launch the server in the background and stop it using 
the “./mcstop” to stop it. This should work pretty well, but if the AWS instance is ever stopped and 
started again, the server will not automatically launch. 
 

5.6 Automatically starting the server 

 
Since Raspbian OS supports systemd, we are going to use that to auto-start MeshCentral in the 
background. First, we need to know our own username and group. If we do “ls -l” in our home folder 
we  
 

drwxr-xr-x   2 pi pi  4096 Jul 19 21:23 Desktop 

drwxr-xr-x   2 pi pi  4096 Jun 26 18:23 Documents 

drwxr-xr-x   2 pi pi  4096 Jun 26 18:23 Downloads 

… 

 
Note the username and group name, in this example it’s “pi” for both. We need this information to 
create the system service description file. To create this file type: 
 

sudo nano /etc/systemd/system/meshcentral.service 

 
Then enter the following lines: 
 

[Unit] 

Description=MeshCentral Server 

 

[Service] 

Type=simple 

LimitNOFILE=1000000 

ExecStart=/usr/bin/node /home/pi/node_modules/meshcentral 

WorkingDirectory=/home/pi 

Environment=NODE_ENV=production 

User=pi 

Group=pi 

Restart=always 

# Restart service after 10 seconds if node service crashes 

RestartSec=10 

# Set port permissions capability 

AmbientCapabilities=cap_net_bind_service 

 



    

  18 

[Install] 

WantedBy=multi-user.target 

 
Note that the user and group values have to be set correctly for your specific situation. Also, the 
ExecStart and WorkingDirectory lines includes the path to the user’s home folder which includes 
the username in it. Make sure that is set correctly. 
 
Once this is done, you can now enable, start, stop and disable using the following commands: 
 

sudo systemctl enable meshcentral.service 

sudo systemctl start meshcentral.service 

sudo systemctl stop meshcentral.service 

sudo systemctl disable meshcentral.service 

 
Type in the first two commands to start and enable the service. Enabling the service will make it 
automatically start when the computer restarts. 
 
Once the server is launched, you can access it using a web browser as before. From this point 
on, refer to the MeshCentral User’s Guide for information on how to configure and use 
MeshCentral. 
 
 

6. Ubuntu 18.04 

 
In this section, we will look at installing MeshCentral on Ubuntu 18.04 LTS. 
This is a long term support of Ubuntu freely available for download at 
https://www.ubuntu.com. Both the desktop and server versions of Ubuntu 
will work. If this is a remote server and the desktop will not be needed, the 
server version of Ubuntu can be used. This section will describe a way to 
install MeshCentral in a user’s home folder, however there is a more secure 
way to do it, see “Increased Security Installation” at the end of this section. 
 
In all cases, MeshCentral must not be installed as root user. It’s not secure and the instructions 
below will not work correctly. 
 

6.1 Installing NodeJS 

 
The first thing to do is get NodeJS installed on the computer. We first install the node version 
manager then activate it and install the NodeJS LTS. It’s done with 4 commands: 
 

sudo add-apt-repository universe 

sudo apt update 

sudo apt install nodejs -y 

sudo apt install npm -y 

 
We can test what version of Node and NPM are installed using: 
 

node –v 

npm -v 

 

https://www.ubuntu.com/


    

  19 

6.2 Installing MongoDB 

 
If we are going to run a large instance, it’s best to use MongoDB 
as the database. If you are using a small instance, you can skip 
installing MongoDB and MeshCentral will use NeDB instead 
which is a light weight database that is probably great for 
managing less than 100 computers. 
 
If you want to use MongoDB, we can install MongoDB Community Edition. More information on 
how to do this for Ubuntu can be found here. 
 
You can install the package using apt and get it started like this: 
 

sudo apt install mongodb -y 

 

Then start the Mongodb service in the background and enable it for auto-restart. 
 

sudo systemctl start mongodb 

sudo systemctl enable mongodb 

 
To verify that MongoDB is running, you can enter the MongoDB shell like this: 
 

mongo --host 127.0.0.1:27017 

 
You can leave the shell using Ctrl-C. The database and log files will be create at these locations: 
 

/var/log/mongodb 

/var/lib/mongo 

 
This is useful to know if you want to make a backup of the database file. 
 

6.3 Port permissions 

 
On Linux, ports below 1024 are reserved for the “root” user. This is a security feature. In our case 
MeshCentral will need to listen to ports 80 and 443. To allow this, we need to allow node to listen 
to ports below 1024 like this: 
 

whereis node 

node: /usr/bin/node /usr/include/node /usr/share/man/man1/node.1.gz 

 

sudo setcap cap_net_bind_service=+ep /usr/bin/node 

 
We first locate the node binary, using “whereis node”, we then use the “setcap” command to add 
permissions to node. Note that we take the path given by whereis and place it in the setcap 
command. The “setcap” command will set permissions allowing node to use ports 1024 and below. 
This permission may be lost when updating the Linux kernel, so this command may need to be 
applied again in some case. 

 

6.4 Installing MeshCentral 

 
Now, we can use the node package manager (NPM) to install MeshCentral. 
 

npm install meshcentral 

 

https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-ubuntu-18-04


    

  20 

 
 
After that, we can run MeshCentral for the first time. For example: 
 

node ./node_modules/meshcentral 

 
If the computer has a well-known DNS name that users and agents will use to connect to this 
server, run MeshCentral like this: 
 

node ./node_modules/meshcentral --cert example.servername.com 

 
At this point, the server will create its certificates and start running. 
 

MeshCentral HTTP redirection web server running on port 80. 

Generating certificates, may take a few minutes... 

Generating root certificate... 

Generating HTTPS certificate... 

Generating MeshAgent certificate... 

Generating Intel AMT MPS certificate... 

Generating Intel AMT console certificate... 

MeshCentral Intel(R) AMT server running on ec2-54-245-141-130.us-west-2.compute.amazonaws.com:4433. 

MeshCentral HTTPS web server running on ec2-54-245-141-130.us-west-2.compute.amazonaws.com:443. 

Server has no users, next new account will be site administrator. 

 
You can now open a browser and try the server. If you can on the same computer, you navigate to 
this URL: 
 

http://localhost 

 
If installing on a server that does not have a desktop GUI, use a different computer and enter http:// 
followed by the IP address or name of the server you installed. 
 
You should see the server working as expected. You will get a certificate error since the server is 
used an untrusted certificate for now. Just ignore the error and see the MeshCentral User’s Guide 
to fix this. 
 

 

Do not use “sudo” in front of “npm install meshcentral”.  



    

  21 

 
At this point, the server is usable but, there are two things that may still need to be done. First, if 
we opted to use MongoDB, we have to configure MeshCentral to use a MongoDB database. By 
default, NeDB will be used which should only be used for small deployments managing less than 
100 computers. We also need to automatically start the server when the computer starts. 
 
To continue, stop the MeshCentral server with CTRL-C. 
 

6.5 Configuring for MongoDB 

 
By default, MeshCentral uses NeDB with a database file located in ~/meshcentral-
data/meshcentral.db. This is great for small servers, but if we opted to install MongoDB, let’s make 
use of it. We need to edit the config.json file located in the meshcentral-data folder. 
 
 pico ~/meshcentral-data/config.json 

 
Then, make the start of the file look like this: 
 

{ 

  "settings": { 

    "MongoDb": "mongodb://127.0.0.1:27017/meshcentral", 

    "WANonly": true, 

    "_Port": 443, 

    "_RedirPort": 80, 

    "_AllowLoginToken": true, 

    "_AllowFraming": true, 

    "_WebRTC": false, 

    "_ClickOnce": false, 

    "_UserAllowedIP" : "127.0.0.1,::1,192.168.0.100" 

  }, 

… 

} 

 
If you start with the default config.json created by MeshCentral, you will need to remove some “_” 
characters in front of settings, mongodb and wanonly. You can also add a “_” to other values. For 
details on all of the config.json options, including the “WANonly” option, refer to the MeshCentral 
User’s Guide. 
 
You can then save the config.json file and run MeshCentral again. This time, you don’t need to 
specify the certificate name. You just need to run it like this: 
 

node ./node_modules/meshcentral 

 
The server should now run correctly and use MongoDB. You can even delete the file 
~/meshcentral-data/meshcentral.db as it’s not going to be used anymore. You can check that it 
runs correctly by browsing to the server’s address again and creating a new account. The first 
account that is created will be administrator for the server, so don’t delay and create the first 
account right away. 
 
Once you are done, we can stop the server again using CTRL-C and in the next sections, we will 
look at starting the server in the background. 
 



    

  22 

6.6 Manually starting the server 

 
We can manually start and stop the MeshCentral server in the background in different ways. In this 
section, we are going to create two commands “mcstart” and “mcstop” to take care of this. Type 
this to create the two commands: 
 

echo "node ./node_modules/meshcentral > stdout.txt 2> stderr.txt &" > mcstart 

chmod 755 mcstart 

 

echo "pkill –f node_modules/meshcentral" > mcstop 

chmod 755 mcstop 

 
You can now run the “./mcstart” command to launch the server in the background and stop it using 
the “./mcstop” to stop it. This should work pretty well, but if the AWS instance is ever stopped and 
started again, the server will not automatically launch. 
 

6.7 Automatically starting the server 

 
Since Ubuntu 18.04 supports systemd, we are going to use that to auto-start MeshCentral in the 
background. First, we need to know our own username and group. If we do “ls -l” in our home folder 
we get for example: 
 

drwxr-xr-x   2 default default 4096 Jul 20 00:03 Desktop 

drwxr-xr-x   2 default default 4096 Jul 20 00:03 Documents 

drwxr-xr-x   2 default default 4096 Jul 20 00:03 Downloads 

… 

 
Note the username and group name, in this example it’s “default” for both. We need this information 
to create the system service description file. To create this file type: 
 

sudo pico /etc/systemd/system/meshcentral.service 

 
Then enter the following lines: 
 

[Unit] 

Description=MeshCentral Server 

 

[Service] 

Type=simple 

LimitNOFILE=1000000 

ExecStart=/usr/bin/node /home/default/node_modules/meshcentral 

WorkingDirectory=/home/default 

Environment=NODE_ENV=production 

User=default 

Group=default 

Restart=always 

# Restart service after 10 seconds if node service crashes 

RestartSec=10 

# Set port permissions capability 

AmbientCapabilities=cap_net_bind_service 

 

[Install] 

WantedBy=multi-user.target 

 



    

  23 

Note that the user and group values have to be set correctly for your specific situation. Also, the 
ExecStart and WorkingDirectory lines includes the path to the user’s home folder which includes 
the username in it. Make sure that is set correctly. Lastly the path to node may need to be changed. 
Type “whereis node” to find the correct path. 
 
Once this is done, you can now start, enable, stop and disable using the following commands: 
  

sudo systemctl enable meshcentral.service 

sudo systemctl start meshcentral.service 

sudo systemctl stop meshcentral.service 

sudo systemctl disable meshcentral.service 

 
Type in the first two commands to start and enable the service. Enabling the service will make it 
automatically start when the computer restarts. 
 
Once the server is launched, you can access it using a web browser as before. From this point 
on, refer to the MeshCentral User’s Guide for information on how to configure and use 
MeshCentral. 
 

6.8 Increased Security Installation 

 
On Debian based Linux distributions like Ubuntu, a better and more secure way to install 
MeshCentral is to have it run within a user account this restricted privileges. When installed like 
this, the self-update capability of MeshCentral will not work. Instead of installing MeshCentral in 
the user’s home folder, we install it in /opt/meshcentral and we create a meshcentral user that 
does not have rights to login or change any of the MeshCentral files. To do this, start by creating 
a new user called “meshcentral” 
 

sudo useradd -r -d /opt/meshcentral -s /sbin/nologin meshcentral 

 
We can then create the installation folder, install and change permissions of the files so that the 
“meshcentral” account gets read-only access to the files. 

 
sudo mkdir /opt/meshcentral 

cd /opt/meshcentral 

sudo npm install meshcentral 

sudo -u meshcentral node ./node_modules/meshcentral 

 

The last line will run MeshCentral manually and allow it to install any missing modules and create 
the MeshCentral data folders. Once it’s running, press CTRL-C and continue. The following two 
lines will change the ownership of files to the meshcentral user and restrict access to the files. 

 

sudo chown -R meshcentral:meshcentral /opt/meshcentral 

sudo chmod 755 –R /opt/meshcentral/meshcentral-* 

 

To make this work, you will need to make MeshCentral work with MongoDB because the 
/meshcentral-data folder will be read-only. In addition, MeshCentral will not be able to update 
itself since the account does not have write access to the /node_modules files, so the update will 
have to be manual. First used systemctl to stop the MeshCentral server process, than use this: 

 

cd /opt/meshcentral 

sudo npm install meshcentral 

sudo -u meshcentral node ./node_modules/meshcentral 



    

  24 

sudo chown -R meshcentral:meshcentral /opt/meshcentral 

 

This will perform the update to the latest server on NPM and re-set the permissions so that the 
meshcentral user account has read-only access again. You can then use systemctl to make the 
server run again. 
 
MeshCentral allows users to upload and download files stores in the server’s “meshcentral-files” 
folder. In an increased security setup, we still want the server to be able to read and write files to 
this folder and we can allow this with: 
 

sudo chmod 755 –R /opt/meshcentral/meshcentral-files 

 
If you plan on using the increased security installation along with MeshCentral built-in Let’s 
Encrypt support you will need to type the following commands to make the “letsencrypt” folder in 
“meshcentral-data” writable. 
 

sudo mkdir /opt/meshcentral/meshcentral-data 

sudo mkdir /opt/meshcentral/meshcentral-data/letsencrypt 

sudo chmod 755 –R /opt/meshcentral/meshcentral-data/letsencrypt 

 
This will allow the server to get and periodically update its Let’s Encrypt certificate. If this is not 
done, the server will generate an “ACCES: permission denied” exception. 
 

7. Microsoft Azure 

 
In this section, we will look installing MeshCentral on Microsoft Azure. Microsoft Azure offers 
many operating system options and we will be selecting “Ubuntu Server” as our choice. From the 
Azure portal, we select “Virtual machines” on the left and “Add”. 

 
 



    

  25 

Once you click on Ubuntu Server, you will see a list of available versions. In this example, we 
selected Ubuntu 18.04 LTS (Long Term Support). We then have to create an instance name and 
a way to authenticate to the instance. 
 

 
 
Next is the type of instance to launch. Any instance will do including the “B1s” which is the 
smallest possible instance. Of course, as you manage more computers, using an instance that is 
a bit more powerful is a good idea. 
 



    

  26 

 
 
After selecting the instance type, you can configure storage. 30 gigabytes is plenty. Then the 
Network Security Group. This is where it’s important to open at least TCP ports 22, 80 and 443. 
 

Type Protocol Port Range Description 

SSH TCP 22 SSH 

HTTP TCP 80 HTTP 

HTTPS TCP 443 HTTPS 

Custom TCP Rule TCP 4433 Intel AMT CIRA 

Custom TCP Rule TCP 8080 Swarm Server* 

 
Optionally if you wish to use the instance with Intel AMT, open port 4433. In addition port 8080 
must be open if you are migrating from MeshCentral1 (not typical). 
 
Lastly we launch the instance, it will take a few minutes to setup. 
 



    

  27 

 
 
You can then find the public IP address and use a SSH client like PUTTY on Windows to connect 
to the instance and start getting MeshCentral setup. From this point on, just use the Ubuntu 
section above to complete the installation. 
 

8. Google Cloud 

 
In this section, we will look installing MeshCentral on Google Cloud. You can sign up easily at 
https://cloud.google.com/ and you can run a small instance for less than 5$ a month.  
 
 

 
 
 
Once you have create an account, you can go to the main console and on the left side, go to 
“Compute Engine” and create a new VM instance. For our demonstration, we are going to create 
the smallest instance possible which is a single shared CPU and only 0.6 gigs of RAM. 
 

https://cloud.google.com/


    

  28 

 
 
We select the proper settings and select “Ubuntu 18.04 LTS Minimal” as the boot operating 
system. This is convenient as we already covered how to install MeshCentral on this operating 
system. 
 

 



    

  29 

 
Make sure to allow HTTP and HTTPS traffic. Setup like this, we will not be able to manage Intel 
AMT unless we also open TCP port 4433. Once done with all these options, we can launch the 
VM instance. 

 
 
The new instance will take a few minutes to start up. An interesting feature of Google Cloud is 
that you can access the VM instance shell directly from the web browser. No need for a separate 
SSH client. This is exactly what we need and we opt to go ahead and option the web console. 
 

 
 
If will log you in automatically, no additional credentials needed. We can then follow the “Ubuntu 
18.04 LTS” section above to complete the installation. If you opt for a very small instance, it’s 
probably a good idea to skip installing MongoDB. Just to get started quickly, we can use the 
following commands: 
 

sudo apt update 

sudo apt install nodejs -y 

sudo apt install npm -y 

sudo setcap cap_net_bind_service=+ep /usr/bin/node 

npm install meshcentral 



    

  30 

node ./node_modules/meshcentral --fastcert –wanonly --cert 35.227.45.84 

 

 
 
This will install node and npm. Will allow non-root access to ports 80 and 443 and install and start 
MeshCentral. Because this example uses a very small server instance, we opted to use the 
“fastcert” option to create RSA 2048 certificates (the default is RSA 3072 which is more secure).  
 
We use the “wantonly” option because MeshCentral will not be managing computers on a local 
network, and for this demonstration just used the external IP address of the instance as the 
server name. 
 
If you plan on using an instance without the Intel AMT CIRA port being open (TCP 4433), it’s 
recommended to add “--mpsport 0” so to inform MeshCentral that this port is not open and to not 
offer Intel AMT CIRA features. 
 
Of course, this set of commands is just to get the server started quickly. Follow the Ubuntu 18.04 
instructions to setup the server to automatically start using system. 
 

 

9. Ubuntu 16.04 

 
In this section, we will look at installing MeshCentral on Ubuntu 16.04 LTS. 
This is the same installation at Ubuntu 18.04 LTS, however you need to 
install NodeJS in a special way. If you use “apt install node”, you will get an 
older version 4.x of NodeJS that will not work with MeshCentral. 

9.1 Installing NodeJS 

 
The first thing to do is get NodeJS installed on the computer. We first install the node version 
manager then activate it and install the NodeJS LTS. It’s done with 3 commands: 
 

cd ~ 

wget https://deb.nodesource.com/setup_8.x 
sudo bash setup_8.x 

sudo apt-get –y install nodejs 

 
We can test what version of Node and NPM are installed using: 
 

node –v 

npm -v 

 

You should see Node version 8 and NPM version 5. At this point, you can continue installing 
MeshCentral using the Ubuntu 18.04 installation instructions. 
 

 

 

 

 

 

 

Do not use “sudo” in front of “npm install meshcentral”.  



    

  31 

10. OpenBSD 6.4 

 
In this section, we will look at installing MeshCentral on OpenBSD 
6.4. This section was originally written by Daulton and placed here 
with this permission. The original instructions are located at: 
https://daulton.ca/meshcentral-server-on-openbsd/. The section 
will setup MeshCentral on non-standard ports HTTPS/3000 and 
HTTP/3001. Thank you to Daulton for his contribution. 
 

10.1 Installing MongoDB 

 
Install the Mongodb package. 
 

pkg_add mongodb 

 
Start and enable Mongodb at boot. 
 

rcctl start mongod 

rcctl enable mongod 

 
Temporary remount /usr with wxallowed while we compile the port. For Cloud VPS they usually 
only have a root partition instead of how OpenBSD splits it up by default, you will need to edit 
/etc/fstab and add wxallowed to the options for the root partition and then reboot. Assure to 
remove this from the fstab options after you are done. 
 

mount -r -o wxallowed /usr/ 

 

10.2 Installing NodeJS 

 
Install NodeJS from ports as it is not available by a package. 
 

$ cd /tmp 

$ ftp https://cdn.openbsd.org/pub/OpenBSD/$(uname -r)/{ports.tar.gz,SHA256.sig} 

# cd /usr 

# tar xzf /tmp/ports.tar.gz 

# cd /usr/ports/lang/node 

# make install 

# make clean 

 

10.3 Installing MeshCentral 

 
Create the MeshCentral user. The parameters used here are important as we will not let this user 
login, it has no home directory, and its class is set to daemon. In line with the OpenBSD daemon 
user naming scheme, we preface the username with an underscore (_) to make it easily 
identifiable as a daemon user. 
 

useradd -s /sbin/nologin -d /nonexistent -L daemon -u 446 _meshcentral 

 
Let’s install MeshCentral and adjust the permissions. 
 

mkdir -p /usr/local/meshcentral 

https://daulton.ca/meshcentral-server-on-openbsd/


    

  32 

cd /usr/local/meshcentral 

npm install meshcentral 

chown -R _meshcentral:_meshcentral /usr/local/meshcentral 

 
Configuring for MongoDB and adjusting some other settings such as the network port. Open up 
the following config in an editor then, make the start of the file look like below. If the setting does 
not exist yet, just add it below one of the ones we are adjusting in the main settings block. 
 
If you start with the default config.json created by MeshCentral, you will need to remove some 
underscore character in front of settings to enable the setting, such as mongodb and wanonly. 
You can also add an underscore to other values. For details on all of the config.json options, 
including the “WANonly” option, refer to the MeshCentral User’s Guide. 
 
Before you can edit the configuration, start the Meshcentral briefly so it generates the default 
configurations and certificates. Once you see that it says "MeshCentral HTTPS server running...", 
Ctrl-C to exit then edit the configuration file next. 
 

cd /usr/local/meshcentral/node_modules/meshcentral/ && doas -u _meshcentral 

/usr/local/bin/node /usr/local/meshcentral/node_modules/meshcentral/meshcentral.js 

--launch 

 
Edit the MeshCentral config.json. For example using vi: 
 

vi /usr/local/meshcentral/meshcentral-data/config.json 

 
In the settings section, set the following key value pairs: 
 

{ 

"settings": { 

"Cert": "meshcentral.example.com", 

"MongoDb": "mongodb://127.0.0.1:27017/meshcentral", 

"WANonly": true, 

"Port": 3000, 

"ExactPorts": true, 

"RedirPort": 3001, 

"allowLoginToken": true, 

"allowFraming": true, 

"NewAccounts": 0, 

}, 

… 

} 

 
Add the following to the root crontab to start MeshCentral at boot. Edit the root crontab by doing 
the following command as root: crontab -e 
 

@reboot cd /usr/local/meshcentral/node_modules/meshcentral/ && doas -u 

_meshcentral /usr/local/bin/node 

/usr/local/meshcentral/node_modules/meshcentral/meshcentral.js --launch 

 
As root launch Meshcentral while it installs mongojs, once that finishes and Meshcentral launches 
close it by doing Ctrl-C. Adjust the permissions again as we ran Meshcentral and it generated 
new files we need to change the ownership of. 
 

/usr/local/bin/node /usr/local/meshcentral/node_modules/meshcentral 

chown -R _meshcentral:_meshcentral /usr/local/meshcentral 

 
Warning: do not keep this running or use this command in the future to start the Meshcentral 
server as it starts the server as root! 
 
This is a reference /etc/pf.conf for you to keep your server secure. Add any locally connected 
networks which should have access and any public IP address of a network which will have client 



    

  33 

PCs connect from to target_whitelist table. Add your own home and/or business IP to 
my_own_IPs table. 
 

ext_if = vio0 

set reassemble yes 

set block-policy return 

set loginterface egress 

set ruleset-optimization basic 

set skip on lo 

 

icmp_types = "{ 0, 8, 3, 4, 11, 30 }" 

 

table <target_whitelist> const { 45.63.15.84, 10.18.5.0/24 } 

table <my_own_IPs> const { 45.63.15.84 } 

table <bruteforce> 

 

match in all scrub (no-df max-mss 1440) 

match out all scrub (no-df max-mss 1440) 

 

block in quick log from urpf-failed label uRPF 

block quick log from <fail2ban> 

 

block in from no-route to any 

block in from urpf-failed to any 

block in quick on $ext_if from any to 255.255.255.255 

block in log quick on $ext_if from { 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, 

255.255.255.255/32 } to any antispoof for $ext_if 

block log all 

 

pass in quick inet proto icmp icmp-type $icmp_types 

pass in quick inet6 proto icmp6 

 

pass in quick proto tcp from <my_own_IPs> \ 

to (egress) port { 22 } \ 

flags S/SA modulate state \ 

(max-src-conn 5, max-src-conn-rate 5/5, overload <bruteforce> flush global) 

 

pass in quick inet proto tcp from <target_whitelist> to port 3000 

pass in quick inet6 proto tcp from <target_whitelist> to port 3000 

 

block in quick log on egress all 

 

pass out quick on egress proto tcp from any to any modulate state 

pass out quick on egress proto udp from any to any keep state 

pass out quick on egress proto icmp from any to any keep state 

pass out quick on egress proto icmp6 from any to any keep state 

 
After saving the configuration in /etc/pf.conf, reload the pf rules with: 
 

pfctl -f /etc/pf.conf 

 
To save rebooting and have MeshCentral launch then, launch it so you can begin using it. This 
time it is running as _meshcentral, now it is safe to keep running and you can use this command 
in the future. 
 

cd /usr/local/meshcentral/node_modules/meshcentral/ && doas -u _meshcentral 

/usr/local/bin/node /usr/local/meshcentral/node_modules/meshcentral/meshcentral.js 

--launch 

 
You can now access MeshCentral at https://your address:3000 or 
https://meshcentral.example.com:3000 if you named the machine meshcentral or create an A 
record named meshcentral. The first user you create will be the Administrator, there is no default 
user. 


