
233

Chapter 14
Securing Intel® Active

Management Technology
from Attacks

After an access cover has been secured by 16 hold-down screws, it will be
discovered that the gasket has been omitted.

—De la Lastra’s Corollary

The Internet is full of malware and malicious people. Any new technology
is under constant threat to be attacked by adversaries for fun, fame, and

profit. As a target, Intel® Active Management Technology (Intel AMT) is no
different. The attackers could operate remotely and communicate with Intel
AMT over the wired or wireless network interfaces. Alternatively the attacker
could also operate locally by physically operating the Intel AMT computer,
or by placing some malicious program in the computer’s operating system
that operates on behalf of the attacker. This chapter explains the details of
the security protections designed into Intel AMT. These protections ensure
that Intel AMT is well guarded from attacks by malicious entities (people or
programs) operating remotely or locally.

However, providing robust security in any system often comes at a cost.
This cost is usually in terms of reduced convenience and ease of use in using
the system. This chapter also describes the tradeoffs between security and
ease of use of the Intel AMT computer. It describes the various choices avail-
able to an IT architect in configuring Intel AMT such that it best suits the
deployment environment, both from ease of use and security perspectives.

234    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    235

	 Threats to an Intel® AMT Computer
The previous chapters covered the unique and powerful set of security and
remote management capabilities offered to the IT manager by Intel AMT.
However, just like most other powerful capabilities in any system, the bad
guys can and will attempt to misuse Intel AMT to attack the computer. The
extent of damage caused depends on the nature of the attack. For example, it
could be something relatively less severe such as causing nuisance to the end
user of the computer, or something more serious such as disabling some of the
security protections offered by Intel AMT.

Before going over the security protections designed into Intel AMT to
defend and protect against the bad guys, it is useful to understand the threats
the bad guys pose to a computer equipped with Intel AMT. Several of these
attacks also apply to all computers in general.

Local Attacks

Attacks can be remote or local. A local attack to a computer means that the
attacker has physical access to the computer having control of its keyboard,
mouse, network connection, USB and serial ports, power button, and so on.
Such an attack could take place when the user has left a computer unattended
(such as when gone for lunch, or during nights if the computer is a desktop
computer that the user cannot carry home at night). Of course, such an attack
is one of the most powerful forms of attack, but requires the attacker to bypass
many other hurdles such as the building security system, or security guards,
video surveillance, and so on. A more likely scenario is that the attacker is a
rogue insider. Several assumptions can be made regarding the motivations
of the attacker, and the constraints under which the attacker is operating,
as follows.

The attacker may simply steal the computer and walk away with it,
assuming it’s a laptop or a small form-factor desktop model, and not bound
to the wall by a steel cable. Or he may just open the computer chassis and
steal the hard disk. This assumes that the attacker is after the currently
stored data on the disk, and does not worry about the discovery of the attack,
since in such cases the attack will be detected pretty soon. The attacker
may adopt a stealthier approach such as copying some important files from
the computer’s disk onto his USB flash drive. This requires the attacker to

Chapter 14: Securing Intel® Active Management Technology from Attacks    235

bypass the computer’s login or unlock mechanisms such as BIOS password,
hard-disk password, operating system or unlock password, thereby making
the attack difficult.

The attacker may also be interested in installing backdoors on the
computer allowing him to have subsequent access to the computer remotely.
The attacker can do so by accessing the computer’s disk and placing some
malicious programs on the disk. This also requires the attacker to bypass
the computer’s login or unlock mechanisms. It also requires the malicious
program to be of a nature that this undetectable by the anti-virus and anti-
spyware tools installed on the computer, thereby further increasing the dif-
ficulty of the attack.

An even more invasive and hard-hitting form of local attack is possible
when the attacker opens the chassis of the computer and does something
really bad to the computer’s hardware. Examples include installing a wire-
less transmitter for keystrokes, replacing the existing BIOS with a malicious
version of the BIOS, replacing the firmware of Intel AMT with a malicious or
modified version of the firmware, or using a hardware flash reader (available
at Radio Shack for a few hundred dollars) to read sensitive data off the Intel
AMT flash device. Of course, the assumption is that the attacker has access
to the required tools and the time needed (with no one watching or walking
by) to mount such an attack. These attacks are therefore much harder and
complex, but still possible, and need to be defended against.

Several of these attack scenarios apply to Intel AMT, and the defense and
protection mechanisms Intel AMT provides to protect against these attacks is
the subject of this chapter. Some of the attack scenarios do not apply to Intel
AMT. For example, if an attacker simply walks away with the hard disk of
the computer, Intel AMT cannot prevent the data falling into the attacker’s
hands.

Remote Attacks

Remote attacks far outnumber local attacks because of their very nature
of being mounted remotely and not requiring the attacker to be physically
vulnerable at the time of conducting the attack. Remote attacks are more
complex to mount due to the reduced attack surface relative to local attacks,
since the remote attacks have to be mounted over the wired or wireless
network connections. Following are some remote attacks that an attacker

236    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    237

may try to mount against Intel AMT computers. Subsequently we will see
how the protections designed into Intel AMT prevent these attacks.

Man in the Middle

The attacker may try to snoop the communication flowing over the network
between Intel AMT and the management console. Some types of transac-
tions between Intel AMT the management console involve some sensitive
information such as security settings. Snooping can allow the attacker to
have knowledge of such information. Using more complex mechanisms,
the attacker may also try to intercept the communication and modify the
information as it flows over the network. Such an attack can cause Intel
AMT to act upon commands that were not sent by the management console
but instead were sent by the attacker.

Injecting Malicious Host Software

The attacker may try to load and execute some malicious code in the host
operating system. An attacker can try to inject code into the operating system
space remotely in several ways. Sending malicious code via email, browser
activity, and exploiting an unpatched vulnerability in the kernel are just a few
examples. Once the attacker has successfully loaded his code and the code
begins execution, then the code can communicate with Intel AMT in that
computer using the local communication mechanisms—Intel Management
Engine Interface (Intel MEI) or LMS, explained in earlier chapters—and try
to attack or compromise the Intel AMT code executing in the memory of
the computer, or try to attack the nonvolatile memory that stores the Intel
AMT code.

Impersonation and Privilege Elevation

The attacker may try to impersonate the legitimate system administrator of
Intel AMT to carry out operations within Intel AMT that would normally
be allowed only by the system administrator. Password guessing, online or
offline dictionary attacks, and password cracking are some ways to do this.
Replaying old transactions (such as sending old network packets captured off
the network) may also result in impersonation.

Chapter 14: Securing Intel® Active Management Technology from Attacks    237

Typical usage of Intel AMT requires multiple system administrators to
have access to various command sets in Intel AMT. For example, a security
system administrator may have access to the commands that control the System
Defense settings, whereas a system discovery administrator may have access to
the commands for hardware asset discovery. A system discovery administrator
may try to elevate his privileges to execute System Defense related commands
with the malicious intention of disabling the System Defense capability of the
computer.

Runtime Attacks by Exploiting Vulnerabilities

The attacker may try to exploit runtime vulnerabilities in the code of Intel
AMT. Such known vulnerabilities may exist in unpatched code on computers.
For example, there may be a specific vulnerability in the code of Intel AMT
that can be exploited by sending a malformed network packet. Some of the
common classes of attacks that exploit vulnerabilities in all types of software
and firmware are buffer overflow attacks, stack attacks, and code injection.
See http://en.wikipedia.org/wiki/Category:Security_exploits for details on
various types of exploits.

Denial of Service

If the security protections are strong, the attacker may not be able to steal
confidential information, or actively damage the computer by sending
unauthorized commands. Still, an attacker may be able to do just enough so
as to cause of a Denial of Service, the service in this case being Intel AMT.
Examples are where an attacker can send a malformed command to Intel
AMT causing it to crash. Or an attacker may alter the network settings in
the routers so that Intel AMT becomes unreachable by the management
consoles. Such attacks also have the capacity to cause indirect damage to
the user. For example, if an Intel AMT computer cannot be contacted by
the management console to perform a critical virus patch update, then the
computer is at risk if the particular virus in question is at large.

238    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    239

Rogue Insider

Rogue insider attacks are less common than any of the aforementioned
attacks, but if they occur, the consequences are catastrophic. A rogue insider
is a corrupt trusted person having legitimate access rights to the system. The
unique problem in this scenario is that any security measures designed into
the system are ineffective by definition. There are several motivations for
a trusted insider to become corrupt. Disgruntled or revengeful employees,
bribed employees, or underpaid employees trying to make an extra buck by
selling company secrets, and ideologically motivated employees all fall under
this category. An irony of such an attack is that a trusted system administra-
tor can easily mount the attack and also escape undetected by covering his
trails. Some published case studies have revealed that rogue insiders have
only been caught after a long time since they became corrupt. Often the rea-
son for their capture has been because the corrupt employee became lazy and
careless after some time, and committed some stupid mistakes that alerted
others.

The following sections of this chapter and the next chapter describe the
specific protections designed into Intel AMT to prevent the classes of attack
described above.

	 Intel® AMT Process and Memory Isolation
The firmware of Intel AMT executes on the Intel Management Engine (Intel
ME) in the chipset. The Intel ME, as discussed in Chapter 7, is a separate
processing engine from the main CPU that executes the operating system
such as Windows or Linux. Therefore, the processes running on the Intel
ME are completely isolated from the main CPU and there is no direct path
of process communication between the main CPU and Intel ME processes
(except the Intel Management Engine Interface or Intel MEI as described
in Chapter 7). The Intel MEI is very limited and provides a very specific
communication channel between software in the main OS and Intel ME
firmware processes such as Intel AMT.

The memory that the Intel ME firmware uses is also isolated by the
chipset hardware from access by the main CPU. The chipset isolates the Intel
ME memory using the UMA (Unified Memory Architecture) mechanism.

Chapter 14: Securing Intel® Active Management Technology from Attacks    239

Attempts by any piece of software in the main OS to directly access the Intel
ME memory is blocked by the chipset hardware.

Process and memory isolation for firmware executing in the Intel ME
provides the bulk of security protection to Intel AMT from malicious soft-
ware residing in the main OS. This allows the critical functionality in Intel
AMT to execute unhindered, regardless of the presence of malware in the
main OS space.

	 Intel® AMT Nonvolatile Storage Isolation
The nonvolatile storage of Intel AMT is the place where the code and data for
Intel AMT is stored. In the currently shipping generations, this is a piece of
NOR flash, controlled by an SPI flash controller located in the I/O Controller
Hub or ICH, also known as the Southbridge. The same nonvolatile storage
also stores the BIOS code and other pieces of data, such as the data used by
the Gigabit Ethernet controller (GbE). Therefore, several pieces of hardware
on the platform have some form of access to this nonvolatile storage. It is
required that the Intel AMT code and data is not accessible by the BIOS or
the GbE.

To facilitate this protection, the Intel AMT flash device is partitioned
into multiple logical regions such as BIOS, Intel ME, GbE, and the Flash
Descriptor, as shown in Figure 14.1. The ICH hardware defines owners for
each of these regions, and defines an identifier for each owner. The owners
in this case are pieces of hardware located on the platform having some
sort of access to the nonvolatile storage, such as the Host CPU, Intel ME,
and GbE. The ICH hardware uses the Flash Descriptor to support read/
write access per owner for each region defined. At platform power on, the
ICH hardware reads the Flash Descriptor data structures (located at offset
0 of the nonvolatile flash), and enforces the access control. So those region
boundaries cannot be moved, nor can an unauthorized owner read/write
to various regions of the flash. For example, the Intel ME cannot read/
write into the BIOS region and vice versa (if the Flash Descriptor is set
that way). The Flash Descriptor is itself read/write protected from all other
region masters. This is the standard operating mode providing the required
security for various regions of the nonvolatile flash storage device.

240    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    241

BIOS Region

Intel® ME Region

GbE Region

Flash Descriptor
Region

Straps

Signature

Code

3rd Party Data

Private Data

Figure 14.1	 Intel® ME SPI Flash Partitions

The main purpose of the Flash Descriptor is to describe the various
regions the flash device is divided into, and the different owners that can
access the various regions and their read/write security permissions. Each
master has direct read access only to its region. However, write access has to
be explicitly granted, and is available via a hardware interface.

There is a pin (called Security Override Strap pin) in the ICH, which if set
allows read/write access to the entire flash device by anyone. This is primarily
provided for initial manufacturing and testing, and later on for facilitating
programming or reprogramming the flash in case of service returns scenarios
where, for example, the flash got corrupted for some reason. Therefore, if a
malicious entity were to gain physical access to the platform, he could open
the chassis of the computer and set the Override Strap, and cause a platform
reset. He would then be able to gain read/write access on the complete flash
part. The malicious entity could then modify the Flash Descriptor to grant
itself read/write access to sensitive portions of the flash (such as the BIOS boot

Chapter 14: Securing Intel® Active Management Technology from Attacks    241

block), and subsequently access those sensitive portions on the flash, thereby
compromising the security of the system.

However, even by mounting a physically invasive attack such as opening
the computer chassis and setting the security override strap pin as mentioned
above, an attacker cannot compromise the security of Intel AMT. The attacker
can load a maliciously modified copy of the Intel AMT firmware on the flash
device, but this copy of the firmware will not execute because the firmware
signature is invalidated. The attacker cannot read sensitive information from
the flash device either because all the sensitive information is secured using
the blob service protection. These protection mechanisms are explained in the
following sections.

	 Firmware Security
One of the major concerns in using software that is generally available, such
as that which is available over the Internet, is the uncertainty regarding the
trustworthiness of a piece of code published in this manner. There are two
issues that must be addressed to make users trust the software:

Ensuring authenticity, ■■ that is, assuring users that they know where the
code came from

Ensuring integrity, ■■ that is, verifying that the code wasn’t tampered
with since its publication or in transit

The use of digital signatures on the code assures recipients that the code does
indeed came from the specified source.

Digital signatures are created using a public-key signature algorithm such
as the RSA public-key cipher. In practice however, public-key algorithms are
often too inefficient for signing long pieces of data (which is code in this case).
To save time, digital signature protocols use a cryptographic digest, which is a
one-way hash of the code. The hash is signed instead of the code itself. Both
the hashing and digital signature algorithms are agreed upon beforehand.

242    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    243

Here is a summary of the process:
A one-way cryptographic hash of the code is produced using a standard 1.	
hashing algorithm such as SHA-1 or SHA-256.

The hash is encrypted with the private key of the signer. The encrypted 2.	
hash is the digital signature of the signer on the code.

The code and the digital signature (encrypted hash) are transmitted to 3.	
the recipient.

The recipient produces a one-way hash of the code using the same crypto-4.	
graphic hashing algorithm.

Using the digital signature algorithm, the recipient decrypts the signed 5.	
hash with the signer’s public key.

If the signed hash matches the hash computed by the recipient, the sig-6.	
nature is valid and the code is intact.

When software (code) is associated with a publisher’s unique signature, dis-
tributing software over insecure media (such as the Internet) is no longer an
unsafe or anonymous activity. Digital signatures ensure trust (authenticity of
origin and integrity) on the code.

A good discussion on code signing is available at [9].

Intel® AMT Firmware Signing Process

Intel signs the firmware code for Intel AMT using the principles of digital
code signing technology as explained above. This ensures that the only code
that is executed by the Intel ME is the one that is produced and digitally
signed by Intel. To provide end-to-end integrity and data origin authentica-
tion for firmware images and manifests, the Code Signing System located
at Intel’s secure facilities generates and stores a set of asymmetric Firmware
Signing Keys (FWSK). These keys are used to generate digital signatures
for manifests, as shown in Figure 14.2. The public key corresponding to the
private key used to generate the manifest digital signature is placed in the
manifest. Manifest digital signatures are generated using the RSA algorithm
with modulus lengths of 2048 bits.

Chapter 14: Securing Intel® Active Management Technology from Attacks    243

Intel®
Web Server

Intel® Code
Signing Facility

Intel® AMT
Engineering Site

Intel® AMT
Build Server

Intel® Code
Signing Client

Intel® Code Signing
Database Server

Intel® Code Signing
Server Equipped with

Hardware Signing Module (HSM)

Production
Release

Manifest
Digital
Signature

Manifest

Intel® AMT
Firmware

+
Manifests

Figure 14.2	 Intel Firmware Signing Process

A SHA-1 hash of the public portion of the FWSK key is placed in Intel
AMT system ROM. This provides a root-of-trust embedded in the chipset
hardware that defeats flash substitution attacks. Therefore, an attacker cannot
succeed in running a copy of Intel AMT firmware that is not signed by Intel
by copying such a firmware image directly on the flash. To successfully do
this, the attacker would also have to modify the public portion of the FWSK
key in the ROM, which is not possible.

Asymmetric keys based on the RSA algorithm are used to eliminate the
need to create system or platform unique firmware images and manifests. And
because only public keys (no secrets) are stored in the Intel AMT hardware,
the integrity and data origin authentication protection mechanisms for firm-
ware cannot be compromised by a hardware attack on any single Intel AMT
system.

Once a production release of new Intel AMT firmware images and
manifests has been placed on its external Web site by Intel, customers such
as OEMs, Enterprise IT departments, and other SMB customers can receive

244    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    245

these updates either from Intel or from their own OEM Web sites, as shown
in Figure 14.3. A Google search for Intel AMT firmware will reveal several
links to OEM Web sites to obtain the Intel AMT firmware downloads. Some
OEMs bundle the Intel AMT firmware image along with their BIOS images
for downloading purposes.

FW Update
Server

Enterprise IT

Inte® AMT
Enabled Platform

SMB/Consumer

Intel® AMT
Public

Web Server
OEM Manufacturing

Server
OEM Public
Web Server

OEM

Figure 14.3	 Firmware Distribution Flow

Chapter 14: Securing Intel® Active Management Technology from Attacks    245

Intel® AMT Firmware Update Mechanism

Intel AMT provides a mechanism to update its firmware image. This is a very
important aspect to maintain the security of the Intel AMT subsystem. The
availability of a robust and secure firmware update mechanism ensures that
there is a way to apply patches to the Intel AMT firmware. The patches could
be for bug-fixes related to security, reliability, or the patches could contain
new functionality that enhances the security of the Intel AMT subsystem.
This section describes the mechanism by which Intel AMT firmware gets
updated in a reliable and secure manner.

The firmware update can be done via the local interface or network
interface. The local interface allows an application running in the main OS
to communicate with Intel AMT and update its firmware image. Similarly
a remote application can also communicate with Intel AMT and update its
firmware image over the network interface. An ISV could also design a
mechanism to remotely update Intel AMT’s firmware remotely over the local
interface by using a local agent in the main OS.

One of the problems that can occur during the firmware update process is
that power to the computer can be lost (as in the case of a faulty power supply
or interrupted power supply). In such a case we do not want the system to be
stuck with a partial image of the firmware, thereby making it totally useless.

To mitigate this problem, the firmware image in Intel AMT nonvolatile
flash memory is partitioned into two parts: a code area and a recovery area.
The code area stores the main firmware image of Intel AMT, which has the
firmware update application in it. The recovery area stores a small firmware
application—the recovery application. These two areas of flash are never
updated concurrently. Only if the update to one area is successful is the other
area is updated. This ensures that there is always a working copy of a firm-
ware update application or recovery application. The recovery application
can be restarted in the event of a power failure to recover the firmware image,
resulting in power-loss tolerance. All firmware needed for receiving the image
and validating its integrity so as to enable standalone operation of the local
recovery process is partitioned into the recovery area. The extra space in
UMA is used to upload the new image, which is validated completely before
being saved to flash memory. In the event of power failure or other problems,
recovery code boots the next time allowing local, but not remote, recovery
to take place.

246    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    247

The Firmware Update application in an Intel AMT subsystem operates as
a service. The service listens for an incoming message originating from inter-
nal host or network client telling Intel AMT to begin an immediate firmware
update across the interface specified in the message. Dual functionality of this
kind ensures that Intel AMT systems can obtain the latest firmware update on
their own. Alternately, when necessary, an administrator can target a specific
Intel AMT system for immediate update. The Firmware Update application
preserves current firmware image settings, such as OEM-provisioned data,
user configured settings and date, and policy settings, enabling roll-back
to a previous firmware version. Whenever firmware is written to the Intel
AMT flash device, all other Intel AMT system applications are shut down
and brought to a halt. Intel AMT firmware can be updated through network
interfaces when the platform is connected locally in the Enterprise in S0 and
Sx states. Update can also occur in S0 through the internal host interface
where both the host OS and the Intel AMT systems are operational.

	 Intel® AMT BIOS Security
Intel AMT has its own BIOS component that is integrated with the system
BIOS. The Intel AMT BIOS component is a part of the overall Intel ME
BIOS component, which is called Intel ME BIOS Extension (Intel MEBX),
as explained in Chapter 7. The Intel AMT BIOS component offers several
BIOS level interfaces to configure certain Intel AMT settings from the BIOS.
Access to the Intel AMT BIOS screen is allowed only after providing the
Intel AMT admin password. Intel AMT requires that one input the Intel
AMT administrator password before proceeding to the Intel AMT BIOS
screen. Figure 14.4 shows the Intel AMT BIOS password request screen.
Once the correct password is provided, the MEBx proceeds to Intel AMT
BIOS configuration screens.

Chapter 14: Securing Intel® Active Management Technology from Attacks    247

Intel(R) ME Configuration
Intel(R) AMT Configuration
Change Intel(R) ME Password
Exit

Intel(R) Current ME Password

MAIN MENU[]

Intel(R) Management Engine BIOS Extension v2.5.10.0000
Copyright(C) 2003-06 Intel Corporation. All Rights Reserved.

[ESC]=Exit [ENTER]=Access

[]=Select

_

Figure 14.4	 Intel® AMT BIOS Password Request Screenshot

After the Intel AMT admin password authentication is successful, the
Intel AMT firmware allows the Intel MEBX to call into it via the Intel ME
Interface (Intel MEI). For the Intel MEBX to communicate with Intel AMT
firmware over the Intel MEI, no more security protection is required. This
stage of availability of Intel AMT functions is called the pre-boot interface.
After the Intel MEBX completes its job, it passes back control to the BIOS.
After the BIOS completes its execution, it signals this event to the Intel AMT
firmware. At this point, the Intel AMT firmware closes the pre-boot interface
and enables the post-boot interface. The post-boot interface of Intel AMT is
the one that is available over the Intel MEI to the host operating system, or
over the network interface to management consoles. The post-boot interface
to the host OS via the LMS route or to the management console requires
authentication in the form of either HTTP Digest or Kerberos based HTTP
Negotiate (discussed later in this chapter). Also, the Intel AMT firmware

248    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    249

could be configured to mandate the use of the TLS protocol between the host
operating system or management console and the Intel AMT firmware, for
additional protection.

As is evident from this explanation, Intel AMT enforces a higher bar
of security requirements for the post-boot interface as compared to the
pre-boot interface. The post-boot security requirements must meet a higher
bar because the operating system or the network infrastructure has a much
wider and more exploited attack surface than the BIOS. Hence, Intel AMT
invests a much higher degree of trust in the BIOS than the operating system
and the network, or software running in the operating system or on the
network (agents, consoles, applications, services, drivers, and so on).

	 Securing the Communication with Intel® AMT
Intel AMT uses Transport Layer Security (TLS) to secure its communication
over the network. This protocol prevents man-in-the-middle class of attacks
by providing communication security and privacy between two end-points
over the Internet and enterprise intranets. The specific benefits of using TLS
are as follows:

It supports server side and client side authentication■■

It is application independent, allowing other protocols like HTTP to ■■

be transparently layered on top of it

It is able to negotiate encryption keys as well as authenticate the server ■■

(and optionally the client) before data is exchanged by higher-level
applications

It maintains the security and integrity of the transmission channel by ■■

using encryption, authentication and message authentication codes.

The TLS protocol establishes a secure channel of communication between
the client and server, and consists of two parts, server authentication and
optionally client authentication. Figure 14.5 shows the sequence of transac-
tions in the TLS protocol between the client and server. In the first part, the
server sends its certificate and its cipher preferences in response to a client’s
request. The client then generates a master key, which it encrypts with the
server’s public key and transmits the encrypted master key to the server.
The server recovers the master key and authenticates itself to the client by
returning a message authenticated with the master key.

Chapter 14: Securing Intel® Active Management Technology from Attacks    249

TL
S

C
lie

nt
 (M

an
ag

em
en

t C
on

so
le

) TLS Server (Intel®
 A

M
T D

evice)

ClientHello

ServerHello, Certificate, ServerKeyExchange, CertificatRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify, ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

Application Data

Figure 14.5	 TLS Protocol Handshakes

In the optional second part, the server sends a challenge to the client.
The client authenticates itself to the server by returning the client’s digital
signature on the challenge, as well as its public-key certificate. A variety of
cryptographic algorithms are supported by TLS. Subsequently, the client and
server use keys derived from the master key to encrypt and authenticate the
exchange of data between themselves. This was a very short description of the
TLS protocol. We did not want to spend a lot of time explaining the TLS
protocol in this book. The TLS protocol specification can be found in [10]
and [11]. An easier description can be found in any network security book. My
favorite network security book is [1].

Intel AMT works in the TLS server mode, while applications on other
devices, host or management consoles, work in the TLS client mode, and
initiate communications to applications on the Intel AMT system. Intel
AMT supports both the mandatory first phase of authentication (server
authentication) and the optional second phase of client-side authentication.

250    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    251

Further authentication of the IT administrator operating the Management
Console (which in turn is the TLS client) is achieved using the HTTP Digest
or Kerberos authentication protocols. These protocols are described later in
this chapter.

To support these applications, Intel AMT supports a minimum number
of simultaneous TLS sessions. As of this writing this number was 24, but
Intel’s engineering team fine-tunes this number with every product generation
to balance functionality and performance. TLS in the Intel AMT system
contains an RSA certificate or certificate chain and the RSA private key that
corresponds to the leaf certificate in the chain. The public key certificate
and the private keys are used for TLS server authentication during the TLS
handshake.

The cipher suites and associated certificate types and key exchange algo-
rithms supported are listed in Table 14.1.

Table 14.1	 TLS Cipher Suites in Intel® AMT

Cipher Suite Certificate Type and Key

Exchange Algorithm

TLS_RSA_WITH_NULL_SHA RSA, X.509v3

TLS_RSA_WITH_RC4_128_SHA RSA, X.509v3

TLS_RSA_WITH_AES_128_CBC_SHA RSA, X.509v3

The TLS implementation uses RSA keys with modulus lengths of up to
2048 bits. The implementation supports a single certificate hierarchy with a
minimum depth of two (Root and Leaf) or one (self-signed root certificates).
Certificate Revocation List (CRL) is also supported to further validate Host
and Intel AMT system certificates.

The TLS_RSA_WITH_AES_128_CBC_SHA cipher suite is preferred
and used whenever possible. The TLS_RSA_WITH_RC4_128_SHA is used
only where the AES is not available. The TLS_RSA_WITH_NULL_SHA
cipher suite will only be used where regulatory requirements do not allow the
use of the confidentiality.

Chapter 14: Securing Intel® Active Management Technology from Attacks    251

	 Authentication to Intel® AMT
The HTTP protocol provides for three authentication mechanisms: the
HTTP Basic authentication, the more secure HTTP Digest authentication,
and the most secure HTTP Negotiate authentication (based on Kerberos).
The first two mechanisms are password-based and are detailed in RFC 2617.
Kerberos is based on a symmetric key system, and is based on RFC 1510. Intel
AMT supports only the latter two mechanisms, HTTP Digest and HTTP
Negotiate authentication mechanisms. The reason for not supporting HTTP
Basic authentication is to eliminate the risks associated with this least secure
mechanism of authentication.

Password-based Authentication to Intel® AMT

HTTP Basic Authentication protocol (Intel AMT does not support this)
provides for a challenge-response authentication mechanism that may be
used by a server to challenge a client, and by a client to provide authentication
information back to the server. In this scheme, the client sends its user ID
and password to the server, and the server will authorize the client only if it
can validate the user ID and password. Otherwise, the server responds with
an error code. The user ID and password are sent across the wire, without
any encryption, which makes the basic authentication scheme inherently
insecure.

The HTTP Digest Authentication scheme is more secure than the HTTP
Basic Authentication Scheme, because the password is never sent from the
client to the server in the clear. In the Digest Scheme, the server challenges
the client with a random value (called a nonce). A valid response contains
a cryptographic checksum of the username, the password, the given nonce
value, and some other data. In this way, the password is sent over the wire as
a hash to prevent interception and reuse. Upon receiving the response, the
server computes the checksum (a cryptographic hash) using the same inputs,
and compares the computed checksum with the one received from the client.
If they match, then the client is authenticated.

Intel AMT uses the HTTP Digest Authentication Scheme for authen-
tication of the client (such as the Management Console), before allowing
access to the system. A challenge is sent to the client, and a response con-
taining the digest of the password and other information, must be returned.

252    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    253

The Intel AMT system stores the MD5 hash of the username, password, and
the HTTP realm. The HTTP realm incorporates the Intel AMT machine
ID, which is unique for every system. This makes the hash value stored on
every Intel AMT system unique.

Should an attacker break into the Intel AMT system’s flash memory and
seizes this hash value, it is of no use in attacking other Intel AMT systems,
even if the passwords of those Intel AMT systems happen to be the same. The
cryptographic hashing also ensures that the passwords are hard to be reverse
engineered by gaining access to the hash value. The steps involved in the
HTTP Digest authentication technique are detailed in Figure 14.6.

I want to authenticate

Stores:
H1, RealmName
(where H1 =
MD5 HASH
[username,
password, Realm])

2. Generate random
 nonce

7. Compute H2' =
 MD5 HASH
 [H1, nonce]

4. Compute H1' =
 MD5 HASH
 [username,
 password, Realm]
 from the user
 supplied username
 and password

5. Compute H2 =
 MD5 HASH
 [H1', nonce]

8. Compare whether
 H2 (received) =
 H2' (computed)

Client: Remote Console Intel® AMT System

1

3Challenge: Realm, nonce

Response: H2

Authentication Succeeded/Failed

6

9

Figure 14.6	 HTTP Digest Authentication

Chapter 14: Securing Intel® Active Management Technology from Attacks    253

Intel AMT requires that HTTP Digest passwords used for authentication to
the Intel AMT system meet the following minimum criteria:

Must be at least 8 characters long, and up to 32 characters long. ■■

Must have at least one digit character (0, 1,…9)■■

Must have at least one special non-alphanumeric character (“!”, “$”, ■■

“%”). Some special characters, such as double quotes, commas, semi-
colons, and colons are not allowed.

Must contain both lowercase and uppercase Latin characters■■

These restrictions enforced by Intel AMT help to reduce susceptibility of
passwords to offline dictionary attacks by attackers.

Kerberos Authentication to Intel® AMT

Kerberos is an authentication service developed by the Project Athena
team at MIT. The first general use version was version 4. Version 5, which
addressed certain shortfalls in version 4, was released in 1994. Kerberos uses
secret-key technology for encryption and authentication. Unlike a public-key
authentication system, Kerberos does not produce digital signatures. Instead
Kerberos was designed to authenticate requests for network resources.

In a Kerberos system, there is a designated site on each network, called the
Kerberos Key Distribution Center (KDC), which performs centralized key
management and administrative functions. The KDC maintains a database
containing the secret keys of all users and machines/servers, authenticates
the identities of users, and distributes session keys to users and servers who
wish to authenticate one another. Kerberos requires trust in a third party (the
KDC). If the KDC is compromised, the integrity of the whole system is lost.
However, Kerberos is generally considered adequate within an administrative
domain or enterprise. Just as a contrast, public-key cryptography was designed
precisely to avoid the necessity to trust third parties with secrets.

Kerberos also addresses a key shortcoming of the password-based
HTTP Digest approach. HTTP Digest requires that each Intel AMT
device be configured with at least one username and password pair. In a
large enterprise with thousands of systems, it is going to require a good
amount of management bandwidth to configure and manage unique user-
name/password pairs for all the systems. This may lead to the usage of weak

254    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    255

passwords, or common passwords on the systems. Otherwise the ISVs will be
required to develop components that effectively manage passwords, without
compromising the security of the enterprise.

The integration of the Kerberos protocol over HTTP for authentication
to Web services, with the Windows Domain Controller acting as the KDC,
is wrapped under the HTTP Negotiate protocol umbrella. HTTP Negotiate
protocol allows the use of the older Windows NTLM protocol for authen-
tication. HTTP Negotiate is essentially a wrapper protocol over Kerberos
or NTLM. Intel AMT supports authentication using the Kerberos-based
HTTP Negotiate protocol. Integrating the authentication framework of Intel
AMT systems on the Kerberos-based HTTP Negotiate protocol provides
for a standard and single-sign-on style authentication to Intel AMT. This
eliminates the need for ISV applications (including the Intel AMT configura-
tion service) to manage unique and strong username/password pairs for all
Intel AMT systems. Authentication to Intel AMT thereby becomes as strong
and as secure as authentication to the Windows domain; and administrators
wanting to manage Intel AMT systems need only log in to the Windows
domain to gain access to Intel AMT devices. Windows infrastructure is the
most widely deployed in the industry today, and integration with Microsoft
Windows authentication will cater to a vast majority of the IT user base.

Note Researchers at MIT invented the Kerberos authentication protocol. The Kerberos
page on the MIT Web site [2] has plenty of useful information on Kerberos. A good
starting point for Kerberos documentation is [3]. My favorite is [4]. Microsoft has
also developed very good documentation on Kerberos. The HTTP Negotiate Protocol
is especially very nicely explained in the 3-part article [5]. Starting at [6] you can
follow a gold mine of information on Microsoft Kerberos. My favorite is [7].

Following are some of the benefits derived from leveraging the Kerberos
authentication that is integrated with Active Directory:

If an IT administrator is logged into the Microsoft Windows domain ■■

using his username (that is, domain\username such as, for example
usa/john) and password, then he is able to automatically authenticate
(behind the scenes; without supplying any other password) to Intel
AMT computers.

Chapter 14: Securing Intel® Active Management Technology from Attacks    255

An IT administrator is allowed or denied privileges to manage an ■■

Intel AMT computer based on his membership to a group in Active
Directory. This will ensure that when an IT administrator is no longer
supposed to manage one or more Intel AMT systems, his privileges to
do so are revoked simply be removing his membership from the group
in Active Directory.

Intel AMT devices are able to ascertain the identity of the admin-■■

istrator attempting to gain access to the Intel AMT system, and
be able to apply access control for that user. The notion is that not
everyone who is successfully authenticated by Intel AMT is allowed
access to all resources within Intel AMT. The authorization that a
given user has is governed by an Access Control List (ACL) located
within an Intel AMT device.

Let us see how the magic happens. Every Intel AMT subsystem has a
unique identity (like every user and server has a unique identity) within the
Kerberos domain, and is configured with a few unique Kerberos credentials
(as described below) during the initial configuration process. The Intel AMT
subsystem is represented as a Kerberized service and supports those portions
of the Kerberos protocol that are specified for a Kerberized service. This is
because Intel AMT is a service that administrators authenticate to, when
they want to perform some Intel AMT actions. Specifically, the Kerberos
credentials configured into Intel AMT are as follows. More details of the
initial configuration process of Intel AMT are described in Chapter 17.

Kerberos Service Principal Name (SPN). The SPN uniquely identifies ■■

the Intel AMT object’s within the Kerberos domain. In Windows
Active Directory, the Kerberos domain is the same as the Windows
domain. The SPN takes the form HTTP/<fqdn>:<port number>,
where the FQDN (Fully Qualified Domain Name) is the FQDN of
Intel AMT, and the port number is the port at which Intel AMT
Kerberos service runs. The port number is used to differentiate the
Intel AMT Kerberos service from any other Web service running on
a different port on the host operating system.

256    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    257

Realm Name. This is the name of the Kerberos domain (also referred ■■

to as realm), which is the same as the Windows domain when Intel
AMT is deployed with Microsoft Active Directory.

Encryption Algorithm used by Kerberos. Usually this is RC4-■■

HMAC.

Kerberos Master Key for an Intel AMT subsystem. This is a unique ■■

and secret key that belongs to each Intel AMT subsystem, and is
shared between the Intel AMT subsystem and the KDC.

Clock Tolerance. This is the tolerance (usually set to a few minutes) ■■

within which the time must be synchronized between the KDC, Intel
AMT and the Management Console.

With these credentials, the Intel AMT subsystem is ready to use Kerberos
to authenticate administrators connecting to Intel AMT to perform Intel
AMT operations. Figure 14.7 shows the Kerberos protocol at a high level.
The Management Console acts as a Kerberos Client, and Intel AMT as a
Kerberized Service. The Windows domain controller is the KDC in an Active
Directory–based deployment. The steps shown in green in Figure 14.7 are
performed by the IT administrator or the console on his behalf. Steps in red
along the arrows depict the Kerberos messages that flow on the network as
part of the Kerberos protocol. The steps in red towards the right of the KDC
and the Intel AMT computer depict the operations performed by the KDC
or Intel AMT respectively during the Kerberos authentication process. The
conceptual steps that take place behind the scenes are as follows (in reality a
lot more goes on, but we will leave it as an exercise for the reader to investigate
the gory details).

Chapter 14: Securing Intel® Active Management Technology from Attacks    257

4. TGT +
 Session Key

7. Request for Service
Ticket + TGT + Authenticator

11. Request for Intel® AMT
 Service + Service
 Ticket + Authenticator

13. Acknowledge
 Success/Failure

9. Service Ticket +
 Session Key

2. Request for Ticket -
Granting - Ticket (TGT)

Windows Domain Controller
(Kerberos KDC)

Intel® AMT Enabled Computer
(Kerberized Service)

This transaction occurs once per IT Administrator
logon session (typically once everyday)

IT Administrator
at the Console

3. KDC Verifies IT
 Administrator's
 credentials
 and grants a TGT
 and Session Key

8. KDC decrypts
 TGT, validates
 Authenticator, and
 creates Service
 Ticket

This transaction
occurs every time

the IT Administrator
accesses Intel® AMT

10. IT Administrator
 sends Authentication
 Request to
 Intel® AMT

1. IT Administrator Logs
 On to the Console

5. IT Administrator at
 console stores TGT

6. IT Administrator
 requests access
 to the Intel® AMT

This transaction occurs
the first time the IT

Administrator needs to
access Intel® AMT

12. Intel® AMT
 decrypts Service
 Ticket, validates
 Authenticator,
 and grants
 access if
 successful

Figure 14.7	 Kerberos Authentication Protocol

The IT administrator operating the Management Console authenti-1.	
cates to the Windows domain in the normal way. This gives a Ticket
Granting Ticket (TGT) to the Management Console.

When the IT administrator wants to perform Intel AMT opera-2.	
tions on a given Intel AMT computer, the Kerberos agent on the
Management Console obtains a Kerberos ticket from the KDC for
authenticating to Intel AMT.

258    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    259

The Management Console supplies this ticket to Intel AMT. It also 3.	
supplies a token (called authenticator).

Intel AMT validates this ticket (because it is encrypted by the KDC 4.	
using Intel AMT’s master key). Intel AMT validates the authenticator
as well (using a session key which is embedded inside the ticket). Intel
AMT also validates that the time stamp inside the authenticator is
recent (usually within a few minutes in the past). This prevents replay
attacks.

At this time, Intel AMT has successfully authenticated the IT admin-5.	
istrator. The IT administrator can now perform Intel AMT operations
that this administrator is permitted to perform.

The ticket sent by the IT administrator contains a list of Active Direc-6.	
tory groups that the IT administrator is a member of. Intel AMT uses
this list to determine the permissions of the IT administrator when
Active Directory–based Kerberos is used for authentication.

The next section describes how permissions are enforced on an authenticated
IT administrator.

	 Access Control in Intel® AMT
Intel AMT allows access to its operations to multiple administrators. In other
words, more than one IT administrator is allowed to perform operations in
Intel AMT. But not all IT administrators have the exact same privileges
or permissions. Intel AMT makes it possible to group IT administrators
such that one group of administrators has access to one particular group of
operations; another group of administrators has access to another group of
operations, and so on.

Intel AMT has predefined groups of operations. Each such group of
operations is called an Intel AMT Access Control Realm. Each realm has a
predefined set of operations assigned to it. Some examples of realms and the
operations in those realms are given in Table 14.2. Although this list is not
complete, a complete list with detailed documentation can be found in the
Intel AMT Software Developer’s Kit.

Chapter 14: Securing Intel® Active Management Technology from Attacks    259

Table 14.2 	 Intel® AMT Access Control Realms

Intel® AMT Access
Control Realm

Sample Operations in the Realm

Security Administration Configure additional administrators, setting their credentials and
permissions, configuring TLS, Kerberos, etc.

Network Administration Configure TCPIP parameters, host name, domain name, 802.1x
parameters, etc.

Hardware Asset Information Obtain hardware information for the computer

Remote Control Remotely control the computer by turning it on, off, restart the
computer, etc.

ISV Storage Read and write data into the ISV storage area of Intel AMT

Redirection Configure the Intel AMT subsystem for an IDE Redirection session

Agent Presence Register or deregister an agent presence watchdog, send a
heartbeat to Intel AMT, etc.

Network Time Get and set the Intel AMT Protected Real Time Clock

General Information Various kinds of read operations that most authenticated IT
administrators can do such as reading the version number of Intel
AMT, reading the time, reading the audit log policies, reading the
audit log, read the network settings, read the capabilities available
in Intel AMT, read the computer’s UUID, etc.

Firmware Update Perform a firmware update for the Intel AMT firmware

Wireless Configuration Configure wireless profiles into Intel AMT for access via wireless
interface to Intel AMT

Remote Access Configure the Remote Access parameters such as Management
Presence server address, Remote Access policies, etc.

Secure Audit Log Configure the Audit Log settings such as auditors, audit policies,
export audit logs for archival, etc.

Local User notification Allows an agent in the host operating system to be notified of
certain events inside Intel AMT

As of this writing, a maximum of 16 IT administrators is configurable in
any given Intel AMT subsystem, 8 based on HTTP Digest authentication,
and 8 for Kerberos-based authentication. Each administrator can be assigned
to one or more Access Control Realms. There is one special IT administrator
who has access to all Access Control Realms. This administrator is the Security
Administrator. This administrator can add or remove more administrators to

260    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    261

the various Access Control Realms. The complete list of permissions is stored
in a structure called an Access Control List (ACL). This structure conceptually
looks like the one in Figure 14.8.

HTTP Digest ACL

Kerberos ACL

Realm Bitmap Decoder: 1 = Access Allowed 0 = Access Denied

Username
(String Value)

Hashed Password
(String Value)

Realm Bitmap
(R1 through Rn)

U1 1 1 1 1 1 1 1 1 1

U2 0 1 0 0 0 1 1 1 1

U3 1 0 1 0 1 0 0 0 1

... 0 1 0 1 0 1 0 1 0

U8 0

H(pwd1)

H(pwd2)

H(pwd3)

...

H(pwd8) 0 1 1 0 1 0 0 1

Group SID
(Binary Value)

Realm Bitmap
(R1 through Rn)

SID1 1 0 0 1 1 1 1 0 1

SID2 1 0 1 1 0 0 1 1 0

SID3 0 1 1 0 1 0 0 0 1

... 0 1 0 1 0 1 0 1 0

SID8 1 0 1 1 0 1 0 1 0

Figure 14.8	 Intel® AMT ACL Structure

For IT administrators using HTTP Digest, each entry in the HTTP
Digest ACL structure (depicted by each row in Figure 14.8) stores the user-
name, hashed password, and the Intel AMT Access Control Realms that this
IT administrator has access to. For IT administrators using Kerberos, each
entry in the Kerberos ACL structure (depicted by each row in Figure 14.8)
stores the Active Directory Group ID and the Intel AMT Access Control
Realms that members of this group have access to. Groups (and individual
users) in Active Directory are represented by their SID (Security Identifier).
The Intel AMT ACL therefore just lists the SID, instead of the readable
string name of the group. More details on SID in Active Directory and its
use for group authentication are available in [8].

For a deeper insight into access control mechanisms, refer [12]. Role based
access control mechanisms (check out [13]) are also relevant to this topic.

Chapter 14: Securing Intel® Active Management Technology from Attacks    261

	 Trusted Time in Intel® AMT
Intel AMT uses a Protected Real Time Clock (PRTC) to provide a time value.
Some example usages for the need of a trusted time base in Intel AMT are as
follows

The logging application to log events inside Intel AMT with a time-■■

stamp

The Certificate validation process■■

Kerberos ticket validation■■

Execution of time-driven policies, such as checking for updates on a ■■

weekly basis

The PRTC is separate from the regular system clock that prevents users
or malicious programs running with user permissions from unauthorized
modification of the system time. Such improper system time changes could
cause inaccurate event log timestamps, missed certification validations, or
loss of Kerberos synchronization.

The PRTC is connected to the RTC (Real Time Clock) power well, so the
context of the PRTC is maintained throughout all system power states. Initial
programming of time on the PRTC is needed only after the installation of a
new RTC battery.

Furthermore, it is necessary to prevent attackers from using a rogue time
source on the network. Middlemen must be prevented from making any
modifications to configuration packets that are in transit along the wire and
contain time values.

Intel AMT acquires trusted time from a remote ISV Management
Console. Time synchronization commands are initiated by the ISV
Management Console, either periodically or as part of the discovery mecha-
nism. For synchronizing the time, the ISV Management Console initiates a
mutually authenticated TLS session with the device. Once the TLS session
is established, the ISV Management Console uses a WS-Management call to
set the time. The ISV Management Console keeps accurate time using the
Network Time Protocol (NTP) by communicating with a NTP server, or by
communicating with a Windows Domain Controller (if the Management
Console is part of a Windows Domain).

262    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    263

Semantics that are similar to Simple Network Time Protocol/Network
Time Protocol (SNTP/NTP – check out [14] and [15]) are used for calculating
network latencies, resulting in high-accuracy time updates for more sensitive
usage scenarios such as Kerberos. The protocol transactions are represented in
Figure 14.9.

Response Packet

Calculate
Latencies

Calculate
Latencies;
and Arrive

at Final
Time Value

ME/PRTC Management Console

2

Response Packet4

1Time Update Packet over SOAP - RPC

(Contains Initial Time Stamps)

(over HTTP/TLS)

3Second Time Update Packet

(With High Accuracy Time Stamps after
Calculating Latencies)

Figure 14.9	 Time Sync Model for ME PRTC

If for some reason the time in the PRTC goes out of sync, a network
sync of time using the aforementioned protocol is required to reset the time
on the PRTC. In the event that network connectivity is not available or the
internal firmware for time sync process is not functioning, a BIOS command
protected with Intel AMT admin login is available to set the PRTC time
locally. The BIOS command is primarily a recovery mechanism. It is a good
idea for the ISV Management Console to periodically sync up the time of
the PRTC.

Chapter 14: Securing Intel® Active Management Technology from Attacks    263

	 Summary
In this chapter we discussed the various protections that Intel AMT offers
to ensure that the bad guys are kept out, and the good guys are let in. Table
below briefly captures the protection mechanisms. In the next chapter we will
go into some of the more advanced security protection mechanisms built into
Intel AMT.

264    Active Platform Management Demystified Chapter 14: Securing Intel® Active Management Technology from Attacks    265

Table 14.3	 Security Protections in Intel® AMT

Protection Mechanism Brief Description

Separate processing engine (Intel® ME) Protects processes in the main Operating System
from directly communicating with Intel® AMT

Separate memory for Intel ME Protects processes in the main operating system
from snooping into Intel ME memory

Flash region separation Protects Intel AMT firmware and data from being
snooped or overwritten by malicious entities

Firmware Signing Prevents execution of arbitrary firmware on the Intel
ME. Digital signature check ensures that only Intel-
signed firmware executes on the Intel ME

Intel AMT BIOS password Protects malicious entities from accessing the Intel
AMT BIOS screen and changing the Intel AMT
configuration settings

Intel AMT Authentication Ensures that only authenticated entities can
communicate with Intel AMT

HTTP Digest Authentication Password based authentication to Intel AMT.
Prevents password to be snooped on the wire. Also
prevents BORE attacks, even if the same password
is used on multiple Intel AMT systems

HTTP Negotiate (Kerberos) Authentication Kerberos-based authentication to Intel AMT,
integrated with Microsoft Active Directory Group
permissions. Provides Single-Sign-On to Intel AMT,
thereby making it scalable in the enterprise

TLS for on-the-wire security Protects the communication between Intel AMT
and the ISV management console. Someone
snooping on the wire cannot read or modify
the Intel AMT commands or responses. Also
authenticates the machines on the two sides to
each other.

Access Control Separates the rights of one Intel AMT admin from
another.

Secure Time Protects the time value to be changed by a
malicious entity in the main OS. Provides trusted
time to other Intel AMT components such as
certificate verification component, Kerberos
component, etc.

Chapter 14: Securing Intel® Active Management Technology from Attacks    265

