
331

Chapter 18
Developing Solutions

for Intel® Active
Management Technology

Goto, n.: A programming tool that exists to allow structured programmers
to complain about unstructured programmers.

—Ray Simard

In this chapter, we cover the development and architecture decisions
involved in building Intel® vPro™ technology solutions. Individuals,

software vendors, and organizations can all decide to build their very
own software that makes use of Intel Active Management Technology
(Intel AMT), or add Intel AMT support onto existing software. In all
cases, there are a set of common decisions that can have a large impact the
cost, feature set and level of integration or the final product.

As with all technologies, developers face a learning curve to get up to
speed and ready to build new software, so we want look at all of the options
first, before starting work on software development.

	 Complete Reuse
For many people just getting started with Intel vPro technology, having
deployed just a few computers so far and considering adding Intel vPro
support to an existing software, probably the easiest way to go is to take in

332    Active Platform Management Demystified Chapter 18: Developing Solutions for Intel® Active Management Technology    333

existing software practically as-is. Intel provides the open source Manage-
ability Developer Tool Kit (DTK), which includes many sample tools that
work with Intel vPro technology. Two of the tools in the DTK are especially
made for integration into existing software. These are the Manageability
Commander Tool and the Manageability Terminal Tool. Both of these can
be invoked from the command line to manage a targeted computer:
“Manageability Commander Tool.exe” -h:<hostname>
-u:<username> -p:<passwork> [-tls]

This command line will invoke the Commander tool to manage a single
computer with Intel vPro technology. The user interface is simplified a
little because only one computer is managed. The user can’t, for example,
add or remove a computer. It is pretty easy to add an option to launch the
Commander tool for another software package, and when doing it this way,
the list of managed computers and credentials is not kept in the Commander
tool, but rather by the calling software. As a simple first solution, existing
management software should add the option to invoke the Commander tool
when the user selects a computer with Intel vPro technology.

All of the software in the Manageability DTK is provided as open source.
As a result, developers can freely change or re-brand the code to best suit their
needs.

The Commander tool can deal with most of the Intel AMT features
including support for Serial-over-LAN and IDE-Redirect. Invoking directly
the Commander tool is by far the fastest way to add Intel vPro support to
existing software. It is limited to running on Microsoft Windows using the
.NET framework, but otherwise performs rather well.

Chapter 18: Developing Solutions for Intel® Active Management Technology    333

	 Supporting Serial-over-LAN
Another tool in the DTK with the approximately the same launch options as
the Commander tool is the Manageability Terminal.
“ManageabilityTerminalTool.exe” -h:<hostname>
-u:<username> -p:<password> -t:(title)

The Terminal tool can be launched to target a computer. The calling
software can also optionally specify the title of the window that is displayed
on top of the terminal. This way to launch the terminal tool also allows the
terminal to support remote control and IDE-Redirect. This is by far the
easiest way to add Serial-over-LAN support into an existing application.

Selecting a Terminal

There are other approaches to supporting serial-over-LAN. Some vendors have
opted to use existing terminals such as Putty, Microsoft Telnet, or Microsoft
Hyperterm, which is included with Microsoft Windows XP and optionally
available on Microsoft Vista as a supplemental download. In order to do this
in the past, software solutions would use the IMRSDK.dll to connect to a
managed computer and forward the traffic back and forth to a local TCP
socket. As a result we have the traffic flow shown in Figure 18.1.

Terminal
Software

Management
Software Intel® AMT

Administrator

Figure 18.1	 Management Software Traffic Flow When Using Separate Terminal
Software

334    Active Platform Management Demystified Chapter 18: Developing Solutions for Intel® Active Management Technology    335

At this point, any VT100 terminal software could be used as long as
it’s capable of connecting to a local TCP port. One example is to invoke the
Microsoft Windows Telnet tool like this:
Telnet.exe localhost 12345

Where 12345 is the local port on which the management software is listening.
Even the Manageability Terminal Tool included in the DTK can be used in
this role since it can also be invoked just like the Microsoft Telnet tool.
“ManageabilityTerminalTool.exe” <hostname> <port> (window
title)

Developers will have to build the IMRSDK.dll to TCP replay on their own
and the Intel AMT SDK can help. Once completed, this solution as the benefit
of running on Linux. Developers must be advised that just any terminal will
not do; terminals should support 25 display lines. Many terminals intended
for modem usages support only 24 lines. Also, telnet applications don’t make
good VT100 terminals; they are somewhat compatible with VT100, but it’s
not perfect. Putty for example supports both Telnet and RAW modes, and the
RAW mode would be preferable.

It’s also important to note that the IMRSDK library is only provided in
binary form with no source code for Microsoft Windows and Linux, in both
32-bit and 64-bit versions. Developers must make sure that this library can
run on their platform before starting to build a terminal solution.

In general, redirecting traffic to an existing terminal is not really a great
solution, it’s probably best to use the DTK terminal if possible because it’s
custom built for Intel vPro. Also, the DTK’s terminal will support F1 to F12
keys for various BIOS, and so on. So it’s generally more user friendly.

Another option is to use the terminal control that is in the DTK. This
Microsoft .NET control can be dropped into an existing .NET application,
giving great compatibility while letting developers have flexibility about
how it can be best integrated into an existing application. The terminal
control can be added to an existing form, making the resulting application
more integrated.

If a developer opts to build his own terminal from the ground up, it’s
generally recommended to take a look at the DTK’s terminal as a starting
point. Developers can learn from it and use it to avoid many time consuming
mistakes.

Chapter 18: Developing Solutions for Intel® Active Management Technology    335

	 Selecting a Software Stack
On a practical level, developers will have to select a software stack for their
Intel vPro development or build their own. Figure 18.2 shows three commonly
used Intel AMT source bases.

Inte® AMT RDK

Manageability
Developer Tool Kit

Inte® AMT SDKC/C++

C#, .NET

Java

Figure 18.2	 Available Development Stacks for Various Programming Languages

Figure 18.2 is a bit of an oversimplification. All developers, regardless of
the programming language they use, should get to know the Intel AMT SDK
since it’s the official reference for everything else. Both the Manageability
Tool Kit and the Intel AMT RDK where built with the Intel AMT SDK as
the starting point.

In general, if the target software is Microsoft .NET–based, developers
should look at the DTK’s Manageability Stack.dll. It includes wrapper classes
for practically all of the Intel AMT features with many DTK tools service as
samples on top of this stack.

For C/C++ software development, developers will likely have to start
from the Intel AMT SDK. This SDK provides detailed documentation but
all samples are very low level and so, much work has to be done to use all
of the features. Still, it’s the basis for all other Intel vPro software and is the
official software development kit for Intel AMT in addition to being the most
up-to-date with latest platform features.

336    Active Platform Management Demystified Chapter 18: Developing Solutions for Intel® Active Management Technology    337

For Java development, Intel provides the Reference Developer Kit (RDK).
This Java reference code is not maintained as much as the SDK and DTK,
but it still serves as a good start for Java developers. Even if the RDK is Java,
it won’t run on all platforms since it does make native calls to IMRSDK for
Serial-over-LAN and IDE-Redirect support.

Selecting a WS-Management Stack

Developers using the Manageability Developer Tool Kit will find that it
includes its own C# built WS-Management stack that was custom made
to work with Intel AMT. For developers not using the DTK’s code, there
are two other well known solutions for supporting WS-Management. Figure
18.3 shows the WS-Management stacks that are commonly available.

OpenWSMANMicrosoft
WinRM

Management
Console

Manageability
Developer Tool Kit

WSMAN Stack

Options

Figure 18.3	 Management Consoles Have a Choice of Three WS-Management Stacks

In the Manageability Developer Tool Kit, the WS-Management stack is
fully written in C# and works on top of the HTTP client that is built into
.NET. Since it’s built with Intel vPro in mind, it works very well, but does not
claim to be a general purpose WS-Management stack. It is also built to be fast
and work correctly with the Intel vPro Enabled Gateway. For developers using
.NET, this is clearly the WS-Management stack that is recommended.

Starting with Microsoft Vista, Microsoft includes a WS-Management
stack with the operating system. Microsoft WinRM can also be installed
as a freely available package on Microsoft.com. All of the Intel AMT SDK
samples based on WS-Management use WinRM and so, the Intel AMT SDK

Chapter 18: Developing Solutions for Intel® Active Management Technology    337

provides plenty of sample code for using WinRM. Even the C# samples in the
SDK use WinRM, and so work differently from the C# code in the DTK.
Microsoft WinRM is widely used but has a few major disadvantages:

Microsoft WinRM must be configured in advance. When using
Microsoft WinRM, the user must first configure and start WinRM.
Instructions on how to do this are included in the Intel AMT SDK.

Microsoft Windows XP users must download and install an extra
package. If not automated, this can be a time-consuming process.

WinRM is also slow. Because each WS-Management call required a new
HTTP connection, making many consecutive WS-Management calls can
be rather slow. OpenWSMAN and the DTK WS-Management stack don’t
have this problem and users will notice a significant improvement in call
performance.

WinRM can’t ignore un-trusted certificates. It is sometimes useful to
connect to a TLS enabled Intel AMT computer even if the certificate on
the Intel AMT computer is not trusted by the console. For example, this is
practical if the certificate must be renewed.

Lastly, this stack may not work well with Intel vPro Enabled Gateway.
Because the developer can’t setup a different proxy for each HTTP session,
instead it must be set system-wide, possibly disrupting other applications on
the same computer.

For all these reasons, even if WinRM is heavily used with all of the Intel
AMT SDK samples, it is a stack that should be avoided when possible.

Lastly, OpenWSMAN is likely the best solution for C/C++ developers. It’s
available at no cost, it’s well supported, and it works well with Intel AMT.

Other WS-Management stacks are available for JAVA and other languages.
In the case of Java, the Intel AMT RDK does not support WS-Management,
only SOAP and so does not yet use a WS-Management stack of its own.

338    Active Platform Management Demystified Chapter 18: Developing Solutions for Intel® Active Management Technology    339

	 Using the WS-Management Translator
Since Intel AMT started out using SOAP and is moving over to
WS-Management, new manageability solutions should focus on provid-
ing excellent support through WS-Management. Still, Intel AMT enabled
computers before version 3.0 do not have support for WS-Management
and to help with backward compatibility, Intel provides a freely available
WS-Management translator that allows WS-Management–only solutions to
communicate with SOAP-only Intel AMT computers.

Except for developers using the Management Developer Tool Kit, which
supports both WS-Management and SOAP in the same stack, all other
developers should consider focusing on WS-Management support first, with
native SOAP support second or using the WS-Management translator for
legacy support.

	 Using the Manageability DTK Stack
The Manageability Developer Tool Kit (DTK) is more than a set of refer-
ence tools; it also includes a usable Microsoft .NET stack built in C#. The
DTK stack has many benefits such as automatic detection of TLS and
WS-Management and support for all versions of Intel AMT, all the way
back to Intel AMT 1.0.

The DTK includes two major DLLs that most of the DTK tools make
use of:

Manageability Stack.dll Includes all of the .NET classes needed to con-
nect to and manage an Intel AMT computer. The stack supports all of the
features demonstrated by all the tools and supports remote and local (LMS)
connection, TLS support, WS-Management support and much more. This
stack contains only one user visible form for debugging. Any application built
on top of this stack can cause the stack to show this debug form, making it
easier to see what the stack is doing.

Manageability Controls.dll In the DTK, all common Intel AMT forms
are located in this controls DLL. This includes the VT100 terminal, and
common forms for editing certificates, circuit breakers, and much more.
Because most of these controls have a look and feel that is unique to the
DTK, many developers may opt to use the DTK stack as-is, but change

Chapter 18: Developing Solutions for Intel® Active Management Technology    339

the forms from the Manageability Controls.dll to best match their own
application. Probably by far the most popular control in this DLL is the
VT100 terminal, one of the only terminals custom built specifically for Intel
AMT serial-over-LAN.

A really good way to get started with the DTK stack is to take a look
at the ManageabilityCmd.exe sample that is available as part of the DTK’s
source code. The code sample is about two pages long and demonstrates the
basics of how to use the stack to connect to an Intel AMT computer and
perform management commands on it.
// In the main method
AmtSystem computer =
 new AmtSystem(hostname, 16992, username, password,
false, true);
computer.AutoFetchCache = false;
computer.OnStateChanged +=
 new AmtSystem.ObjectStateHandler(SystemStateChangedHandl
er);
computer.Connect();

// Event sing method
private static void SystemStateChangedHandler(AmtSystem
computer)
{
 switch (computer.State)
 {
 case AmtSystemObjState.Connecting:
 Console.Out.WriteLine(“Connecting.”);
 break;
 case AmtSystemObjState.Disconnected:
 Console.Out.WriteLine(“Disconnected.”);
 break;
 case AmtSystemObjState.Connected:
 Console.Out.WriteLine(“Connected.”);
 break;
 }
}

340    Active Platform Management Demystified Chapter 18: Developing Solutions for Intel® Active Management Technology    341

In this code sample, an object of class AmtSystem is created and setup
for managing a target hostname with a given username and password. The
specified port “16992” indicates that this computer is probably not setup
with TLS, but the stack may automatically change the port to 16993 if TLS
is detected.

The AutoFetchCache property is set to false so that the stack does not
start to load up all of the settings of the computer upon connection. If set to
true, the stack will pre-load all of the computer’s settings making subsequent
calls to get Intel AMT parameters much faster. This caching feature was
added to the DTK stack to speed up user interfaces.

Finally, the Connect and Disconnect methods can be called on the
AmtSystem object to connect and disconnect from the Intel AMT computer.
Since calls are made over HTTP, the stack’s concept of connection is really
made up, at any given time the stack many not be truly connected to the
computer, but the concept of connection was created for simplicity. Both
Connect() and Disconnect() methods on the stack are non-blocking and will
return immediately. An application must catch the state change event to get
notified of the connection.

At any time, the DTK stack will update the connection state from
“disconnected” to “connecting” to “connected” and back to “disconnected”
by updating the State property and firing the OnStateChanged event.
Figure 18.4 shows the possible transitions between these states. Only when
an object is in “Connected” state can management operations be called.

Connected

Connecting

Disconnected
Connection Failed

Disconnection By User or Error

Figure 18.4	 Connection State of the Manageability DTK Stack

Chapter 18: Developing Solutions for Intel® Active Management Technology    341

Using the connection and state system of the DTK stack, an applica-
tion can easily keep track of the state of each connection. It’s generally
recommended in this model to call Connect() or Disconnect() and only
update the user interface once the state of the object as changed and the
event is fired. This way, a user interface only needs to update at a single
place in the code.

Manageability Stack Services

Once the DTK stack is in connected state, it’s time to perform management
operations. To do this, the stack offers a set of sub-objects, each representing
a set of features, as shown in Table 18.1.

Table 18.1	 DTK C# Sub-objects for Performing Management Operations when the
DTK Stack Is in the Connected State

Info

Remote

Network

Assets

Events

Redirection

Storage

Watchdog

WatchdogLocal

SecurityAdmin

CircuitBreaker

Wireless

NetworkAccessControl

NetworkAccessControlAdmin

RemoteAccessAdmin

NetworkTime

AuditLog

Once connected, a developer can simple use any of these services by
calling methods like this:
computer.Assets.GetBios();
computer.CircuitBreaker.GetCircuitBreakerFilters();
computer.Redirection.GetIderSessionLog();
computer.Storage.GetStorageAttributes();
computer.Wireless.GetWirelessCapabilities();
computer.Watchdog.GetAgents();

342    Active Platform Management Demystified Chapter 18: Developing Solutions for Intel® Active Management Technology    343

These are only some of the many methods that can be called on services.
There is one important point to remember: if a service is not available on a
given computer, the service object will be null. For example on Intel AMT
1.0, there is no support for Circuit Breakers (Intel® System Defense) and so
the “CircuitBreaker” services will be null. As a precaution, a developer can
perform a test:
if (computer.CircuitBreaker != null)
{
 // Supported
 computer.CircuitBreaker.GetCircuitBreakerFilters();
}
else
{
 // Not supported
}

Another good example of this test is when the DTK stack is connected
locally via LMS, in this case, most of the services are not available but some
services are uniquely available when connected locally.
if (computer.Watchdog != null)
{
 // Remote connection
 computer.Watchdog.GetAgents();
}
if (computer.WatchdogLocal != null)
{
 // Local connection
 computer.WatchdogLocal.GetWatchdogs();
}

In this example, the stack can be connected locally or remotely and in
both cases, one of the two services will usually be accessible. Speaking of
connecting the stack locally using LMS, the DTK stack is built to attempt to
automatically detect local connections, so this code will work:
// In the main method
AmtSystem computer =
 new AmtSystem(“localhost”, 16992, username, password,
false, true);
computer.LocalConnection = true;
computer.Connect();

Chapter 18: Developing Solutions for Intel® Active Management Technology    343

The “localhost“ string will cause the stack to connect to the local
LMS and will automatically detect that only local services are present and
functional. We can optionally set the LocalConnection property to true
ahead of invoking the Connect() method, this will give a hint to the stack that
a local connection is expected and accelerate the connection process. We can
check local connectivity after connection with the following code:
if (computer.LocalConnection == true)
{
 // Local LMS connection
}
else
{
 // Remote network connection
}

There is one other case where giving a hint to the stack prior to connection
can significantly accelerate the speed of connection. This is when we expect to
connect to the TLS enabled Intel AMT computer.
// In the main method
AmtSystem computer =
 new AmtSystem(hostname, 16993, username, password,
false, true);
computer.UseTls = true;
computer.Connect();

In this case, both the port and the UseTls property are used to give hints
to the stack that a TLS connection is expected. After connection is established,
both Port and UseTls properties can be read again to see what value was
actually used. If the TLS setting is not correct, the stack will automatically try
again but there is usually a 5- to 10-second penalty for the detection process
to occur.

Developers building their own Intel AMT stack may be inter-
ested in the process of auto-detecting Intel AMT Version, TLS, LMS
and WS-Management. There is no formal way to do this and Intel AMT
was certainly not designed to make the process easy. The “TryConnect()”
method in AmtSystem.cs performs this nearly magical task. Care was taken
for this process to work even as early back as Intel AMT 1.0 and so the
methodology will seem very odd.

344    Active Platform Management Demystified Chapter 18: Developing Solutions for Intel® Active Management Technology    345

Once connected, the version of Intel AMT is located in the CoreVersion
property of the AmtSystem object. This value is really the first piece of data
the stack attempts to retrieve from Intel AMT after which it will adapt itself
to work correctly.

Certificate Operations

Developers will notice quickly that it is important to be able to operate on
certificates in order to provision or use many of the features of Intel AMT.
When building the DTK, it became important to create, sign, validate, and
conduct other certificate operations. The DTK stack provides a class called
CertificateOperations that contains only static methods. These methods
use the OpenSSL executable and some built-in Microsoft .NET methods to
perform these operations.

With Microsoft .NET 2.0, there is not built-in support for a certificate
authority. In addition, with Intel AMT 1.0 and 2.0, pushing a certificate into
Intel AMT involved a bit of magic. While it’s beyond the scope of this book to
go into details, developers should look at the CertificateOperations class
for insight into how the DTK handles certificates.

The DTK stack also makes heavy use of the Microsoft Windows personal
certificate store. If Intel AMT is set up to use mutual-authentication, the DTK
stack will automatically try each certificate with the correct usage flags in the
personal certificate store in trying to connect to an Intel AMT computer.

Kerberos Support

Starting with Intel AMT 2.0, Intel AMT has support for Kerberos user
authentication. Some provisioning tools support it and the DTK stack is
capable of logging into an Intel AMT computer with Kerberos. This feature
is somewhat hidden. To log using the current account, just leave the user-
name and password blank:
// In the main method
AmtSystem computer =
 new AmtSystem(hostname, 16993, “”, “”, false, true);
computer.UseTls = true;
computer.Connect();

Chapter 18: Developing Solutions for Intel® Active Management Technology    345

The stack also supports using any Kerberos username and password,
simply add a “\” in the username with the format “domain\username” like:
// In the main method
AmtSystem computer =
 new AmtSystem(hostname, 16993, “domain\user”, “pass”,
false, true);
computer.UseTls = true;
computer.Connect();

The presence of the “\” in the username field will automatically cause
the DTK stack to use Kerberos authentication. One word of warning about
using Kerberos and Serial-over-LAN and IDE Redirect: because of a limita-
tion in the IMRSDK.dll which does not allow the Kerberos credentials to
be passed into the library, Kerberos will only work with the locally logged-in
user. Leaving both username and password blank will make Serial-over-
LAN and IDE-Redirect work since both the stack and IMRSDK will use
the local user account.

	 Summary
Before starting a new software project, or before adding Intel vPro support
to an existing project, important decisions must be taken. Considering the
programming language, type of solution and cost, many options are available.
This chapter covered much of the high level information needed to make
proper design decisions.

We also covered the basics of using the Manageability Developer Tool
Kit stack, a community-supported open source stack that is available freely to
developers.

