
29

Chapter 3

Manageability
Standards

The nice thing about standards is that there are so many of them to
choose from.

—Andrew S. Tanenbaum

Fortunately, bringing some relief to IT managers and system administra-
tors, the industry is starting to converge on a common set of standards for

management of applications, systems, and platforms. Common Information
Model (CIM) for representation of various manageable entities and Web-
based access to this model is fast becoming a prevalent standard. This chapter
discusses these current and upcoming standards.

	 Common Information Model (CIM)
Common Information Model is a standard that started in DMTF in 1997.
During the past 10 years, the CIM standards have grown to cover a wide
variety of manageable entities, including systems, network, storage, applica-
tions, and services.

CIM is an abstraction and representation of the entities in a managed
environment, their properties, attributes, operations, and the way that they
relate to each other. It is independent of any specific repository, software
usage, protocol, or platform.

30    Active Platform Management Demystified Chapter 3: Manageability Standards    31

Chapter 2 provided a high level overview of CIM. In this chapter we
explore in more detail how classes are represented and defined in CIM.

UML Diagram

Figure 3.1 shows an example of CIM classes. The classes are represented in a
UML (Unified Modeling Language) diagram.

BatteryStatus : unit 16 {enum}
TimeOnBattery : unit 32 {units}
EstimatedRunTime : unit 32 {units}
EstimatedChargeRemaining :
unit 16 {units}
TimeToFullCharge : unit 32 {units}

Battery

AssociatedBattery

AssociatedCooling

SuppliesPower

Refrigeration

HeatPipe

IsSwitchingSupply : boolean
TypeOfRangeSwitching : Unit 16
{enum}
TotalOutputPower : unit 32 {units}

PowerSupply

VariableSpeed : boolean
DesiredSpeed : unit 64 {units}

Fan

SetSpeed ([IN] DesiredSpeed : unit 64) : int 32

DeviceId : string {key}

LogicalDevice

Reset () : unit 32

ActiveCooling : boolean

CoolingDevice

Figure 3.1	 Example of CIM Classes

The example shows a LogicalDevice, which is an abstract class that
represents a wide variety of devices that may be present in a platform.
Battery, CoolingDevice, and PowerSuply are further specialization of the
LogicalDevice. These devices are inherited (derived) from LogicalDevice as
shown by the blue arrows. Additional specific properties are added to these
classes. When these classes are instantiated as objects, they represent the
respective specialized devices. At the same time, they inherit the properties
of the parent class, and hence are LogicalDevice objects as well. All of the

Chapter 3: Manageability Standards    31

LogicalDevice behavior is common across all these objects. For example,
all the logical devices can be reset by invoking the Reset() method of the
corresponding object representation.

The red lines in the diagram represent Association objects. These
Associations connect two unrelated object together with certain behavior.
In the example shown, the AssociatedCooling association helps us figure
out which cooling device is cooling a particular LogicalDevice. This can be
used to differentiate a system fan from a processor fan. If one of these fans
fails, a management console can quickly isolate the component impacted
because of this failure.

Managed Object Format (MOF)

Although UML diagrams are nice to get an overview of the overall class
hierarchy and associations, it is not a formal machine-readable representation
as defined by DMTF.

Common Information Model (CIM) Infrastructure Specification defines
a formal language to describe the CIM classes and objects. This is called
Managed Object Format (MOF). Complete MOF syntax and grammar rules
are defined in the CIM specification.

The following example shows an excerpt from the definition of a CIM
class (CIM_Sensor) in MOF syntax.

//==
// Sensor
//==
 [Abstract, Version (“2.6.0”), Description (
 “A Sensor is a hardware device capable of measuring the “
 “characteristics of some physical property - for example,
the “
 “System.”)]
class CIM_Sensor : CIM_LogicalDevice {
 [Description (
 “The Type of the Sensor, e.g. Voltage Sensor. “
 “description of the different Sensor types is as fol-
lows: “
 “………………………deleted text… “.”),
 ValueMap { “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”,
“9”,
 “10”, “11”, “12” },
 Values { “Unknown”, “Other”, “Temperature”, “Voltage”,

32    Active Platform Management Demystified Chapter 3: Manageability Standards    33

 “Current”, “Tachometer”, “Counter”, “Switch”, “Lock”,
 “Humidity”, “Smoke Detection”, “Presence”, “Air Flow”
},
 ModelCorrespondence { “CIM_Sensor.
OtherSensorTypeDescription” }]
 uint16 SensorType;

 [Description (
 “PossibleStates enumerates the outputs of the Sensor.
“
 “For example, a \”Switch\” Sensor may output the
states “
 “\”On\”, or \”Off\”. Another implementation of the
Switch “
 “may output the states \”Open\”, and \”Close\”.
Another “
 “example is a NumericSensor supporting thresholds.
This “
 “Sensor can report the states like \”Normal\”, \”Upper
“
 “Fatal\”, \”Non-Critical\”, etc. A NumericSensor that
“
 “does not publish readings and thresholds, but stores
this “
 “data internally, can still report its states.”),
 MaxLen (128)]
 string PossibleStates[];

 [Description (
 “The current state indicated by the Sensor. This is
always “
 “one of the \”PossibleStates\”.”),
 MaxLen (128)]
 string CurrentState;

};

Let us discuss a few key components of this definition. CIM_Sensor is
the main class defined in this example. This class inherits from a parent class
called CIM_LogicalDevice. Class level qualifiers provide more information
about the class. For example, the qualifier Abstract defines that the class
cannot be directly instantiated into an object, but an implementation must
further derive a Concrete class to instantiate an object. The CIM_sensor
class shown in the example MOF segment lists the properties SensorType,

Chapter 3: Manageability Standards    33

PossibleStates[] and CurrentState. The actual class definition has more prop-
erties, but these are omitted from this illustration. SensorType is an unsigned
integer, PossibleStates[] is an array of strings, and CurrentState is of the type
string. Property level qualifiers provide additional information about the
properties. For example, ValueMap and Values arrays provide enumeration
values to the SensorType property. This allows applications to understand
that if, for example, SensorType = 3, then the sensor is a “Voltage” sensor.
Another property level qualifier MaxLen(128) restricts the length of the string
property CurrentState to 128 bytes.

	 CIM Object Manager (CIMOM)
Let’s delve a little bit into an implementation of the CIM infrastructure. Figure
3.2 shows a conceptual architectural diagram of a CIM-based infrastructure.

Managed Elements

CPU

Memory

Disks

OS

Applications
Services

Provider Provider Provider

WS-Management

CIM Object Manager

CIM Management Application

CIM Client Library

SNMP Data

Repository
MOF Schema
Static Objects

Figure 3.2	 A CIM-based Infrastructure

34    Active Platform Management Demystified Chapter 3: Manageability Standards    35

In a typical implementation of CIM infrastructure, a CIM Object
Manager (CIMOM) provides the most of the object management functions.
The CIMOM provides capability to compile the MOF or XML Schema files
and store them into a database. It allows providers to register to provide object
instantiations of the CIM classes. The providers are typically controlling
a managed resource, such as a disk drive, a networking stack, an applica-
tion, or a service. These providers register with CIMOM to provide a CIM
representation of the managed resource. When an application wants to read
specific information, such as “Disk Capacity,” the CIMOM routes the call to
the appropriate Disk provider. The Provider translates this call to a resource
specific interface, and in this case, sends the requests to the disk driver.

Requests to change an object property are handled in the same way. The
infrastructure also allows for a resource to send asynchronous event to the
provider, which in turn allows the CIMOM to send it to the applications that
are interested in receiving this event.

The CIMOM implementations typically provide a network protocol
interface for the management applications to communicate with the
CIMOM. Web Based Enterprise Management (WBEM) defines this layer
of communication. We will discuss this in more detail later in this chapter.

	 CIM Server
Not all the designs require a full CIMOM implementation. An external
management console communicates to a CIMOM via the network protocol
interface. The management console does not know (or care) if the object
manager it is talking to provides underlying pluggable architecture with
provider interfaces. In fact, a simpler CIM server may be able to satisfy the
requests from the management consoles just as well as a full CIMOM. There
is no complete definition of a CIM server that can be as highly optimized
as the need dictates. The only requirement is that it must support a network
protocol and retrieval of CIM object instances. Internally, an implementation
could just store all data in a few variables, and return values when queried.
A CIM server may not be able to parse MOF files, implement object
inheritance, or support elaborate queries. Most of the embedded implementa-
tions just implement a CIM server, and not a full CIM object manager.

Chapter 3: Manageability Standards    35

	 Management Profiles
DMTF has spent a considerable amount of time in providing comprehensive
definitions of almost every aspect of platform management. There are CIM
definitions for hardware components, disk, network, operating systems,
applications, services, and security to name a few. Each of these areas has
a number of CIM classes defined. At present, over 2000 CIM classes are
defined. Implementations can chose to instrument the classes and proper-
ties that are important for the resources they need to manage. Since CIM
classes do not mandate that a particular class or a property be implemented,
it becomes hard for a management application to manage resources in a
consistent way across the network. Furthermore, CIM as a data model does
not specify the behavior of the system as a whole when a property value is
changed or a method is called. This has led DMTF to further create profiles
that define this behavior.

A profile is a specification that defines the CIM model and associated
behavior for a management domain. The management domain is a set of
related management tasks. For example, a server system may have a set of
redundant power supplies that work together to provide power to the system.
These power supplies are organized in a power domain, and a management
console can query if the power domain is healthy and all the power supplies
are active, and it can register for an event if one of the power supplies fails and
the redundancy is lost. Such a behavior is specified in a power supply profile.
Similarly, a mobile laptop system may have an instrumented battery. The
management console can query all the instrumented laptops for their expected
battery life. Such a behavior is documented in a system battery profile.

A profile contains the definition of a set of mandatory, as well as recom-
mended classes, properties, methods and events. A profile also specifies the
behavior of the system when some of these parameters are changed.

DMTF has two initiatives, System Management Architecture for Server
Hardware (SMASH) and Desktop/Mobile Architecture for System Hardware
(DASH), that have defined a number of profiles that are applicable for systems
hardware management, which is the focus of this book.

DASH and SMASH have many profiles in common, while a few profiles
are specific to each domain. Following are some of the examples of the profiles
that are defined by DASH and SMASH.

36    Active Platform Management Demystified Chapter 3: Manageability Standards    37

Power supply profile■■

OS status profile■■

Media redirection profile■■

Platform watchdog profile■■

Sensor profile■■

PCI device profile■■

LED profile■■

KVM redirection profile■■

BIOS management profile■■

Alarm device profile■■

Battery profile■■

More details on these profiles can be obtained from the DMTF Web site.

	 Web-Based Enterprise Management (WBEM)
Web-Based Enterprise Management (WBEM) provides the ability to exchange
CIM information in an interoperable and efficient manner. WBEM includes
protocols, query languages, discovery mechanisms, mappings, and anything
else needed to exchange CIM information.

Today, WBEM defines three protocols for the communication between a
management console and the CIM infrastructure.

CIM-XML over HTTP was the very first protocol defined by DMTF as
a way to transport CIM objects over the network. Some implementations,
particularly in storage industry, use this protocol heavily.

Windows Management Instrumentation (WMI), Microsoft’s CIM
implementation, had used a DCOM based remote network interface to
communicate with the network console. Although not defined by DMTF,
this has been commonly used.

DMTF has now published the new WS-Management protocol, which is
composed using the latest Web services–based standards. We feel this protocol
is likely to become the dominant standard for the network communications
with a CIM infrastructure.

Chapter 3: Manageability Standards    37

In addition to the above programmatic web-based protocols, DMTF
also has defined an interactive Command Line Protocol (SMASH-CLP).
This allows the network operators to use a simple text based interface to
communicate with a backend CIM infrastructure.

	 WS-Management
The WS-Management architecture is based on a suite of specifications
that define rich functions from which designs may be composed to meet
varied service requirements. It is based on general SOAP-based Web services
protocols, as illustrated in Figure 3.3.

Systems Management

WS-Management

SOAP, HTTP, UDP, etc.

WS-Addressing

WS-Transfer, WS-Enumeration, WS-Eventing

Figure 3.3	 Systems Management with the WS-Management Protocol

38    Active Platform Management Demystified Chapter 3: Manageability Standards    39

To promote interoperability between management applications and
managed resources, this specification identifies a core set of web service
specifications and usage requirements to expose a common set of operations
that are central to all systems management. This comprises the abilities to

Discover the presence of management resources and navigate between ■■

them.

Get, Put, Create, and Delete individual management resources, such ■■

as settings and dynamic values.

Enumerate the contents of containers and collections, such as large ■■

tables and logs.

Subscribe to events emitted by managed resources.■■

Execute specific management methods with strongly typed input and ■■

output parameters.

In each of these areas of scope, the WS-Management specification defines
minimal implementation requirements for conformant web service imple-
mentations. An implementation is free to extend beyond this set of operations,
and may also choose not to support one or more areas of functionality listed
above if that functionality is not appropriate to the target device or system.

As shown in Figure 3.3, the WS-Management specification uses underlying
Web Services specifications, namely WS-Transfer, WS-Enumeration, and
WS-Eventing. These are also sometimes referred to as TEEN (Transfer,
Eventing, and Enumeration) specifications. These specifications are
originally defined by World Wide Web Consortium (W3C, www.w3.org),
and are evolving. On the other hand, the WS-Management specification
is owned by DMTF, and is under a different release cycle. To minimize
ever-changing dependencies, DMTF picked a version and included it in the
WS-Management specification. Console vendors must be careful if using
the W3C version of the TEEN specifications. Some of the changes in W3C
TEEN specifications are not backward compatible with WS-Management.

The following example illustrates the WS-Management messages in a
more detail. In this example scenario, the management console starts with
querying the WS-Management server and enumerating all of the manage-
ment objects it supports. Once it enumerates the objects, it makes further
query to get the object and see the property values.

Chapter 3: Manageability Standards    39

Figure 3.4 will help in understanding the protocol flow.

M
an

ag
ed

 S
ys

te
m

M
anagem

ent C
onsole

Enumerate
1

2

Pull

3

Get

5

EnumerateResponse

6
GetResponse

4
PullResponse-Item-1Pull Response-Item-2

Figure 3.4	 WS-Management Protocol Flow

Let’s examine these messages in more detail.

40    Active Platform Management Demystified Chapter 3: Manageability Standards    41

Step 1: Management console sends the Enumerate request to the managed
system. The managed system is hosting the WS-Management service. The
message directed to a specific ResourceURI (http:……/PhysicalElements)
as shown in the <To> tag of Figure 3.5. The <Action> specifies that this is
an Enumerate request.

<Envelope>
 <Header>
 <To>
 http://192.168.0.100/agent?ResourceURI=
 http://schemas.dmtf.org/wbem/wscim/1/
 cim-schema/2+/CIM_PhysicalElement
 </To>
 <Action>
 http://schemas.xmlsoap.org/ws/2004/09/
 enumeration/Enumerate
 </Action>
 <MessageId>
 uuid:1778973d-10e9-477D-ae07-34e424e6577a
 </MessageId>
 <ReplyTo>
 http://schemas.xmlsoap.org/ws/2004/08/
 addressing/role/anonymous
 </ReplyTo>
 </Header>
 <Body>
 <Enumerate>
 <Expires>expiry time</Expires>
 </Enumerate>
 </Body>
</Envelope>

Figure 3.5	 WS-Management Enumerate Request

Step 2: The response from the WS-Management service to the above
Enumerate request is shown in Figure 3.6. This response starts the
enumeration of all PhysicalElement objects provided by the WS-Management
service for this targeted URI. This response primarily contains an Enumera-
tionContext, which then can be used to walk through the elements in the

Chapter 3: Manageability Standards    41

list. Think of this as a file handle that is used in remaining calls to read the
contents of the file.

<Envelope>
 <Header>
 <To>
 http://schemas.xmlsoap.org/ws/2004/08/
 addressing/role/anonymous
 </To>
 <Action>
 http://schemas.xmlsoap.org/ws/2004/09/
 enumeration/EnumerateResponse
 </Action>
 <RelatesTo>
 uuid:1778973d-10e9-477D-ae07-34e424e6577a
 </RelatesTo>
 <MessageID>
 uuid:dc0eeb8f-d025-4A45-a859-2b4ca640a1ff
 </MessageID>
 </Header>
 <Body>
 <EnumerateResponse>
 <EmumerationContext>0</EmumerationContext>
 </EnumerateResponse>
 </Body>
</Envelope>

Figure 3.6	 WS-Management Enumerate Response

Step 3: Now that the EnumerationContext is known, the management
console can issue the request to start the walkthrough of the list as shown
in Figure 3.7. It starts by sending the request Enumeration/Pull with the
EnuerationContext provided in the previous response. Management console
can further specify how many maximum elements it wants to receive in the
reply.

42    Active Platform Management Demystified Chapter 3: Manageability Standards    43

<Envelope>
 <Header>
 <To>
 http://134.134.201.169/agent?ResourceURI=
 http://schemas.dmtf.org/wbem/wscim/1/
 cim-schema/2+/CIM_PhysicalElement
 </To>
 <Action>
 http://schemas.xmlsoap.org/ws/2004/09/
 enumeration/Pull
 </Action>
 <MessageId>
 uuid:9180bb55-9f9d-4808-93ca-72a6e922105a
 </MessageId>
 <ReplyTo>
 http://schemas.xmlsoap.org/ws/2004/08/
 addressing/role/anonymous
 </ReplyTo>
 </Header>
 <Body>
 <Pull>
 <EmumerationContext>0</EmumerationContext>
 <MaxElements>5</MaxElements>
 </Pull>
 </Body>
</Envelope>

Figure 3.7	 WS-Management Enumeration Pull

Step 4: The response to the Pull request is shown in Figure 3.8. Note
that the response returned the two elements Data1 and Data2. The
EnumerationContext is also changed, so that the subsequent requests can be
made to return the rest of the elements following the ones that are already
returned.

Chapter 3: Manageability Standards    43

<Envelope>
 <Header>
 <To>http://schemas.xmlsoap.org/ws/2004/08/
 addressing/role/anonymous</To>
 <Action>
 http://schemas.xmlsoap.org/ws/2004/09/
 enumeration/PullResponse
 </Action>
 <RelatesTo>
 uuid:9180bb55-9f9d-4808-93ca-72a6e922105a
 </RelatesTo>
 <MessageID>
 uuid:6500bf62-72e6-4468-8c2d-cd969ed0bd56
 </MessageID>
 </Header>
 <Body>
 <PullResponse>
 <EmumerationContext>
 2
 </EmumerationContext>
 <Items>
 <CIM_PhysicalElement>
 DATA1
 </CIM_PhysicalElement>
 <CIM_PhysicalElement>
 DATA2
 </CIM_PhysicalElement>
 </Items>
 </PullResponse>
 </Body>
</Envelope>

Figure 3.8	 The Response to the enumerationPull Request

The two data items returned are the XML representations of the CIM
objects, as shown in Figures 3.9 and 3.10.

44    Active Platform Management Demystified Chapter 3: Manageability Standards    45

<CIM_PhysicalElement>
 <Tag> 406ACME-08K8198</Tag>
 <Description>
 Physical media (SATA disk)
 </Description>
 <ElementName>SATA Disk</ElementName>
 <Manufacturer>ACME Inc.</Manufacturer>
 <Model>SATA Disk, The Big Cahuna 2005</Model>
 <SKU>AABB8900</SKU>
 <SerialNumber>78999999999999</SerialNumber>
 <Version>1.0</Version>
 <PoweredOn>True</PoweredOn>
 <ManufacturerDate>Jan 30, 2005</ManufacturerDate>
 <VendorEquipmentType>
 SATA Cahuna
 </VendorEquipmentType>
 <CanBeFRUed>True</CanBeFRUed>
</CIM_PhysicalElement>

Figure 3.9	 XML Representation of the Data Object (Item 1)

Chapter 3: Manageability Standards    45

<CIM_PhysicalElement>
 <Tag> 406BigBlobMem-08K8198</Tag>
 <Description>
 Physical Memory (DDR memory)
 </Description>
 <ElementName>DDR memory</ElementName>
 <Manufacturer>BigBlobMem Inc.</Manufacturer>
 <Model>DDR memory, The Big Blob</Model>
 <SKU>99000ababab</SKU>
 <SerialNumber>756568432</SerialNumber>
 <Version>1.0</Version>
 <PoweredOn>True</PoweredOn>
 <ManufacturerDate>Jan 30, 2005</ManufacturerDate>
 <VendorEquipmentType>
 DDR, Blob
 </VendorEquipmentType>
 <CanBeFRUed>True</CanBeFRUed>
</CIM_PhysicalElement>

Figure 3.10	 XML Representation of Data Object (Item 2)

Step 5: If the management console has knowledge (as a result of prior
enumeration) that a target object exists on the managed system, then it can
make a direct GetRequest call, as shown in Figure 3.11. In this example, a
specific call to get the Processor object is shown. The Selector of CPU0 selects
the specific instance of the Processor object. The transfer/Get specifies the
action, indicating that this is a Get operation as per WS-transfer protocol
semantics.

46    Active Platform Management Demystified Chapter 3: Manageability Standards    47

<Envelope>
 <Header>
 <To>
 http://192.168.0.100/
 wsman?ResourceURI= http://schemas.dmtf.org/
 wbem/wscim/1/cim-schema/2+/CIM_PhysicalElement
 </To>
 <Action>http://schemas.xmlsoap.org/ws/
 2004/09/transfer/Get
 </Action>
 <SelectorSet>
 <Selector=“DeviceID”>CPU0</Selector>
 </SelectorSet>
 <ReplyTo>
 http://schemas.xmlsoap.org/ws/2004/08/
 addressing/role/anonymous
 </ReplyTo>
 <MessageID>
 uuid:da649f50-3368-4646-bc90-9b294ea058fb
 </MessageID>
 </Header>
 <Body/>
</Envelope>

Figure 3.11	 WS-Management Get Request

Step 6: The response to the Get request comes in the form of GetResponse,
shown in Figure 3.12.

Chapter 3: Manageability Standards    47

<Envelope>
 <Header>
 <To>
 http ://schemas.xmlsoap.org/ws/2004/08/
 addressing/role/anonymous
 </To>
 <Action>
 http://schemas.xmlsoap.org/ws/2004/09/
 transfer/GetResponse
 </Action>
 <RelatesTo>
 uuid:da649f50-3368-4646-bc90-9b294ea058fb
 </RelatesTo>
 </Header>
 <Body> DATA </Body>
</Envelope>

Figure 3.12	 WS-Management Get Response

The Data element in the message shown in Figure 3.12 is expanded in
Figure 3.13. Again, this is an XML representation of the CIM_Processor
object.

<CIM_Processor>
 <Family>165</Family>
 <DeviceID>CPU0</DeviceID>
 <OtherFamilyDescription>
 “Intel (R) Xeon (TM)“
 </OtherFamilyDescription>
 <MaxClockSpeed>3000</MaxClockSpeed>
 <CurrentClockSpeed>3000</CurrentClockSpeed>
 <DataWidth>32</DataWidth>
 <AddressWidth>32</AddressWidth>
 <LoadPercentage>2</LoadPercentage>
 <Stepping>5</Stepping>
</CIM_Processor>

Figure 3.13	 XML Representation of Data Object Embedded in Get Response

48    Active Platform Management Demystified Chapter 3: Manageability Standards    49

Other operations supported by WS-Management are WS-Transfer:Put
and WS-Transfer:Delete. WS-Management also supports events, which is
based on WS-Eventing specification. WS-Eventing allows a management
console to create, delete, and renew event subscriptions. Once subscribed to
events, a management console receives the events in a similar way as most of
the responses discussed above.

	 Putting It All Together
Having looked at the different components of the standards-based management
infrastructure, let’s look at how these pieces fit together. Figure 3.14 provides a
bird’s eye view of the different technologies discussed in this chapter.

Management
Initiatives

WBEM

"DMTF & Industry Management Initiative"
(CDM, DASH, SMASH, SMI, VMAN)

WBEM Protocols
(CIM-XML, WS-Management, SM CLP, ...)

WBEM Infrastructure
(Operations, Events, Query Language, Mappings ...)

CIM Schema
(Models, Classes, Properties, Methods, ...)

Profiles

CIM

CIM Infrastructure
(Meta Schema, Rules, MOF, ...)

Courtesy of dmtf.org

Figure 3.14	 Manageability Standards and Initiatives

CIM Infrastructure defines the language, MOF, UML, and the rules that
provide a foundation of Common Information Model.

CIM Schema comprises the over 2000 CIM classes that define various
objects, their properties, and methods.

Chapter 3: Manageability Standards    49

WBEM defines the infrastructure and protocols that specify how man-
agement applications interact with the Common Information Model.

Profiles define the system behavior and implementation requirements
for classes and properties. This allows for interoperability among different
implementations.

To provide an overall interoperability guarantee of how these components
play together, initiatives such as SMASH and DASH put the processes in
place such as interoperability events and compliance requirements.

	 Summary
In Chapter 1, we discussed the general concepts of systems and platform
management. We then, in Chapter 2, looked at the manageability from a
historical perspective. In this chapter, we reviewed the prevalent management
standards. These standards are used by Intel® Active Management Technol-
ogy (Intel AMT), which is a major feature of Intel® vProTM technology.
In the next chapter, we start looking at the capability of Intel vPro platforms,
and then dive into a discussion of Intel AMT for a majority of the book. In
Chapter 19, we will circle back and discuss the standard profiles supported by
Intel AMT.

