
267

Chapter 15
Advanced Security

Mechanisms in Intel® Active
Management Technology

Reason and free inquiry are the only effectual agents against error.
—Thomas Jefferson (1743–1826),

Notes on the State of Virginia

In this chapter we cover some of the security protections built into Intel®
Active Management Technology (Intel AMT) that were not there in its

first version, but were added in the later versions to make it more secure and
resilient to attacks. These include some new hardware features as well as
firmware features. The new hardware includes features such as a true random
number generator, chipset key, and monotonic counters. The new firmware
features include secure storage of sensitive data, measured launch of Intel
AMT firmware and secure audit logging.

 True Random Number Generator
Many cryptographic algorithms and mechanisms make use of random
numbers, including several of the Intel AMT mechanisms described
previously. The important feature of a random number generator (RNG)
is its entropy. Entropy is the measurement of the inability of an external
viewer to predict the next number that will be generated by the RNG, even
if the viewer knows all the previously-generated random numbers by that

268  Active Platform Management Demystified Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  269

generator. Many implementations use a pseudo-RNG (PRNG), a determin-
istic algorithm that produces the next random number based on the current
generator’s state. These algorithms maintain a high level of entropy, as long
as the initial state (also called “the seed state”) of the PRNG is not known
[1]. For example, some PRNG implementations seed themselves according
to the value of one of the platform clocks. This value is considered to be
somewhat unpredictable (due to the high resolution of the clock), and there-
fore makes a reasonable seed for the PRNG that is suitable for applications
requiring a moderate level of security. However, given that a large number of
platforms power up at the same time, a time that may be known to within a
few minutes or seconds, this could help a potential attacker to narrow down
the possibilities and therefore crack the PRNG seed state, thereby predicting
the next numbers generated by the PRNG. Conversely, an attacker could
learn from the numbers generated by one hacked platform to break other
platforms in the enterprise (known as a BORE attack: “Break Once, Run
Everywhere”).

Intel AMT hardware (beginning with Intel AMT 3.0) contains a true
random number generator (TRNG) hardware device, as shown in Figure
15.1. The TRNG is based on two resistors that produce a thermal noise.
The noise is amplified and provided as input to a frequency-modulated
low-frequency oscillator. Combined with a high-frequency oscillator, a
nearly-random bitstream is produced. A voltage regulator controls the above
hardware components to avoid any bias based on voltage. In addition, a
logic block attempts to correct the bitstream of any bias that may have been
inserted (for example, due to the non-perfect duty cycle of the oscillator), by
using a standard anti-bias correction algorithm.

Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  269

D SET

CLR

Q

Q

“Super Latch”
Diff
Amp

Voltage
Regulator

High
Frequency
Oscillator
500MHz

FM Modulated
Low Frequency
500KHz VCO

Digital
Logic

Poly-silicon
Resistors

Random
Bit Stream

Figure 15.1 True Random Number Generator (TRNG) Hardware in Intel® AMT

One reason why it’s not preferable to use this TRNG for Intel AMT
usages (such as in TLS) as is, is that its takes relatively longer than a PRNG
to generate random bits. In reality, Intel AMT uses a PRNG, whose state
is occasionally reset, to initialize to a state generated by the TRNG. This
creates a powerful high-quality RNG that is able to keep up with the high
usage of random numbers in the Intel AMT subsystem.

 Secure Storage of Sensitive Data: The Blob Service
As mentioned in Chapters 7 and 14, the Intel AMT nonvolatile flash memory
contains the configuration data for Intel AMT, which stores some of the Intel
AMT secrets. The flash controller prevents software applications and drivers
running on the host operating system from accessing the flash part. However,
an attacker may be able to steal a platform, pull out the flash part, and read
its contents by using a flash reader. In this way, an attacker could secure a
backdoor to the enterprise network by reading the secrets, or even modifying
them before returning the flash part to the compromised system.

270  Active Platform Management Demystified Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  271

The blob service is a firmware mechanism that allows for protection of
sensitive data on the flash part. The pieces of information protected by the
blob service are called blobs. In this context, protection of a blob may take the
following forms:

Encryption, to prevent the attacker from reading the content of the ■

blob.

Integrity, to prevent the attacker from modifying the content of the ■

blob.

Anti-replay protection, to prevent the attacker from reading an en- ■

crypted/integrity-protected blob (with a value known to the attacker),
and later reusing it as-is while overriding a value unknown to the
attacker.

Chipset Fuse Key

The Intel AMT hardware (beginning with Intel AMT 3.0) contains a key that
is unique to each system, and it is known to the Intel AMT firmware only.
This key is called the chipset fuse key. The chipset fuse key is actually a set of
128 fuses in the chipset. Each fuse can be blown or un-blown, corresponding
to a 0 or 1 value. The status of each of the fuses (0 or 1) is determined at
manufacturing. A random subset of the fuses is blown on the chipset manu-
facturing line, while the rest remain un-blown. Thus, a random unique value
is created for each chipset. The 128-fuse set thus creates a 128-bit key.

Encryption of secrets is achieved by using standard encryption tech-
niques, but the interesting feature is the key that is used for the encryption.
The encryption key needs to be stored in some nonvolatile form, but the flash
itself is obviously not a good place to store it (otherwise the attacker would first
read this key from the flash and then use it to decrypt the rest of the protected
data on the flash). Rather, the Intel AMT firmware derives an encryption key
from the chipset fuse key, and uses this encryption key to encrypt the sensitive
items being placed on the nonvolatile flash. A similar technique is used to
generate the integrity key for the integrity part of the blob service. Since Intel
AMT firmware is the only entity that has knowledge of the chipset fuse key,
and therefore the encryption key and the integrity protection key, even if the
attacker pulls out the flash part from the system and tries to read it directly,
all he sees is encrypted and/or integrity protected data, depending on the
protection put in place for a given data element.

Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  271

Monotonic Counters

Beginning with Intel AMT 3.0, the Intel AMT hardware contains a few
registers that implement simple counters. The counters are incremented by
the firmware. Those registers are unique in the sense that they are powered
by the platform coin battery (also known as the RTC battery, as it powers the
platform real time clock). Therefore, the counters retain their value as long as
the battery is functional; this is, typically in the range of a few years.

To implement anti-replay protection, the value of the counter is incre-
mented, then appended to the blob before applying the integrity algorithm.
When the blob is read by the firmware, the value of the counter in the blob
is compared to the value in the register. If they match, only then is the
value considered valid. As long as the counter register is not reset (either by
wraparound of the counter or by the replacement of the coin battery), the
value of the counter is unique and therefore the anti-replay is achieved.

The algorithm described here requires a separate hardware register for
each blob that needs to be anti-replay protected. In fact we can take this
method one step further. Only one blob (let us call it “the counter blob”) in
the system will be protected by one hardware counter only. But the counter
blob can contain counter values for other blobs. Whenever an anti-replay
protected blob is modified, its private counter is incremented; this means
that the counter blob is modified, which requires the incrementing of the
hardware counter. Therefore, the counter blob helps us reduce several coun-
ters to a single counter, maintained by the hardware and protected by the
coin battery.

When the battery is replaced, the anti-replay protected blobs are invali-
dated. In some cases, this will require the user to reinsert some of the secrets
protected by the anti-replay blob service.

Note that we assume that every anti-replay protected blob is also integrity
protected. This assumption makes perfect sense—an anti-replay blob contains
a unique value that prevents it from being replayed. If the blob is not integrity-
protected, the unique value can be modified, and therefore the anti-replay
quality is also lost.

Equipped with the aforementioned hardware tools (chipset fuse key
and monotonic counter), the Intel AMT firmware offers a blob service to
all of the other Intel AMT firmware modules. The blob service provides

272  Active Platform Management Demystified Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  273

integrity protection, encryption, and anti-replay protection of data elements
for storage on the flash. The firmware modules can decide the protections
required depending on the security requirements of the data being protected.

A sample list of data blobs protected by Intel AMT by using the blob
service is given in Table 15.1.

Table 15.1 Sample List of Data Blobs Protected by the Blob Service

Intel® AMT Data
Structure

Integrity
Protected

Encrypted Anti-Replay
Protected

Usernames and hashed
passwords

Yes No No

Permissions, Access
Control Lists

Yes No No

Certificates Yes No No

Kerberos keys and
attributes

Yes Yes No

Private portions of
asymmetric key pairs

Yes Yes No

Integrated TPM secrets Yes Yes Yes

 Measured Launch of Intel® AMT Firmware
Someone not familiar with the concept of measured launch may ask “What’s
the meaning of measured launch, and why do we need it?” Let us begin by
trying to answer this question. As a designer of Intel AMT, I would love to be
able to say that Intel AMT is free of bugs—both design and implementation
level bugs. But as you know, hardly any code is bug-free. Even some of the
most critical systems such as airplane cockpit software or air-traffic control
software have been known to have flaws. I remember a joke that went around
a while back (probably still is making the rounds): a software engineer would
never fly in an airplane if he knew that it was running the code written by
him. Therefore, the entire computer industry depends on a perpetual cycle of
bug-fixing and issuing updated software (also known as patches) on a regular
basis that fixes the known flaws. With this mechanism we at least get rid of
being vulnerable to known flaws (and hope that the fixes didn’t introduce
any new flaws!) But finding new vulnerabilities is not an easy task. Attackers

Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  273

(and researchers; who are the good guys) spend a lot of time understanding
software via reverse engineering (and several other methods), and discover
new flaws. The most common way software gets compromised is by being
attacked by malware that makes use of known vulnerabilities in a system that
was not updated with the latest updates. It is therefore a good idea to keep any
software that you use updated with the latest updates, especially the security
updates.

What’s even worse is the inability to be able to know which version of the
software is running. Bugs in the design or code make the software vulnerable
to being exploited by malware. The first thing the smartest malware tries
to do is to hide itself. One of the ways it could do so is by responding to
any queries regarding the version number of the software as being the latest
version. This could trick the software update mechanism into believing that
the latest version of the software is already running, hence there is no need to
update it.

One of the best known methods to render such an attack useless is to
have a trusted piece of software take a measurement (that is, a cryptographic
hash) of the software that is running (or about to be run) and compare the
hash with a previously generated copy of the hash (or copy obtained via some
trusted means) for a given version of the software. If the hashes do not match
then we would know that the software version is not what it claims to be.

Now let us see how Intel AMT uses this concept to offer a measurement
of the firmware that is running inside the chipset.

Intel® AMT Firmware Measurement

Software running on the host CPU (such as the BIOS or VMM loader
or the host operating system) needs to be able to measure the Intel
Management Engine (Intel ME) code before it starts executing. Intel AMT
firmware measurement is a feature (available in Intel AMT 5.0 onwards)
that provides the capability for the Intel AMT firmware to be measured
(actually the entire Intel ME firmware; though referred to as Intel AMT
firmware measurement throughout this chapter) into a register in the Intel
ME that is directly readable (shadowed by hardware) by host software in
the MEI PCI configuration space.

274  Active Platform Management Demystified Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  275

The other features in the chipset that come close to providing a func-
tionality similar to firmware measurement are the signed firmware feature,
and the ICH flash protection mechanism.

The signature verification on the signed firmware is done by the Intel
ME (using the verification logic in the ROM code), and the measurement
done during the signature verification process is not recorded anywhere in the
platform for subsequent evaluation. Therefore, the host processor has no role
to play in this verification, thereby leaving a host-based VMM loader or the
BIOS with no capability to assess the validity of the firmware at any later point
in time after platform power on. Therefore, host software cannot implement
any policy enforcement to enforce certain system behavior depending on the
evaluation of the Intel AMT firmware measurement.

The other problem with using just signed firmware images as an alternative
to firmware measurement is that all images (belonging to a particular chipset
generation) are valid on that chipset because they are signed by the Intel code
signing private key (the corresponding public key hash being embedded in
the ROM). Therefore, the existing firmware signature verification mechanism
makes no distinction between the various versions of the firmware images
that may have been produced by Intel for a given product generation/family.

The Intel AMT firmware measurement mechanism solves these issues
by providing a direct mechanism for reading the firmware measurement by
host-based software (such as BIOS, VMM loader, operating system, or OS
agent), without imposing the burden of the knowledge of firmware address
location or offsets in the flash on the host software. The architecture ensures
by design that the measurement is always completed, recorded, and locked
inside an Intel ME register before the firmware execution begins. Therefore, it
is not possible to overwrite this measurement value after Intel AMT firmware
execution begins. The overwrite protection is guaranteed by the hardware of
the Intel ME. This measurement is also available throughout the time while
the Intel ME is powered on. By definition, the measurement will be different
for each firmware version, thereby giving the host a mechanism to read and
validate the cryptographic measurement of the firmware image. So, even if
there is a vulnerability (known or unknown) that somehow exists in the Intel
AMT firmware, it is not possible for malware to exploit this vulnerability
in a way such that it is able to modify the previously-recorded measurement
value. The Intel AMT firmware measurement value is readable by the host

Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  275

software (such as BIOS, VMM loader, operating system, and so on) via the
PCI configuration space of the Intel® Management Engine Interface (Intel
MEI) device. (The Intel AMT processor is visible to the host OS as an Intel
MEI PCI device.)

 Security Audit Logs
Intel vPro™ technology creates a powerful tool for the network administrator
to control the network entities. However, being in possession of a powerful
tool comes with risks: the risk of erroneous use of this tool, and more impor-
tantly, the risk of malicious use of this tool. Rogue insiders are becoming a
real threat to worldwide governments and enterprises, as demonstrated by a
recent San Francisco network lockout [2].

A legitimate insider such as a network administrator already has very
powerful credentials to access sources of business critical information in an
enterprise. Unfortunately, if such administrators turn against the enterprise,
they become rogue insiders, and prevention of malicious use of a privileged
system is nearly impossible. However, the risk can still be mitigated by using
deterrence mechanisms, and this is primarily where the Intel AMT audit-
ing capability comes into play. This capability is available in Intel AMT 4.0
onwards.

The Intel AMT audit log shown in Figure 15.2 is an internal log that
captures the administrator’s operations in the system, and also captures
unauthorized accesses to the system. When a security breach is discovered,
the audit log can assist in tracking down the administrator (or the illegiti-
mate user) that may have caused the breach.

276  Active Platform Management Demystified Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  277

Intel® AMT
Audit Log

Intel® AMT Audit Log Manager

Auditor:
Manages

the Policy and
the Repository

Signed Intel® AMT Firmware

Private interface available only to
applications for writing Audit records

Application
1

Application
2

Application
3

Audit
Filtering
Policy

Figure 15.2 Intel® AMT Audit Log

The auditing capability cannot prevent system administrators from
misusing the system, but it will prevent them from covering their tracks.
The Intel AMT auditing subsystem allows an enterprise or the authorities to
follow the steps of an administrator responsible for misusing the system, in a
manner that is provable and undeniable. Having such a mechanism in place
can deter an administrator from misusing the system in the first place.

The auditing capability also helps to provide a trail of attempts of
unauthorized actions by unauthorized people or attackers, if the auditing
policies have been so configured. However, this is not the primary use of the
auditing subsystem, since it is assumed that the rest of the authentication
and authorization mechanisms (as described in Chapter 14) would prohibit
illegitimate people or attackers from performing actions within Intel AMT.

Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  277

Separation of Duties

In an audited system, along with an administrator role, there is an auditor
role. The auditor controls the audit log policies and contents. In many cases,
an enterprise will outsource their auditing services to an impartial third-party
company that provides auditing services. A separation of duties is required to
create a true audited system, one that cannot be tampered with by the internal
enterprise administrators. Intel AMT provides for the separation of duties by
separating the roles of an administrator and auditor.

The separation of duties concept is adhered to in the credential mechanism
embedded in the audit log subsystem. While the administrator might usually
be omnipotent where the system is concerned, the audit log is outside of his or
her realm. The administrator should not have the credentials to clear the log,
modify the auditing policies, or modify the auditor’s access credentials. The
auditor, in turn, should only be given enough privileges to manage the audit
log. Conversely, administrative operations in the system are typically out of
the auditor’s realm. This is the concept of two person controls. Thus, in order to
compromise a network, and escape undetected, the administrator and auditor
would have to collaborate.

The auditor role in Intel AMT is represented by an Access Control Realm
called the Auditing Realm. Only the Auditor has access to this realm. Even
the security administrator (the most power administrator in the Intel AMT
subsystem) does not have access rights to the Auditing Realm. The Auditing
Realm has commands that can export and clear the audit log and also to
change audit logging policies and priorities. Any authorized administrator in
the Intel AMT subsystem is allowed to read the audit log, since reading the
log is not as sensitive as clearing it or changing the auditing policies.

278  Active Platform Management Demystified Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  279

Audit Log Records

A record in the audit log represents an administrative operation on the system.
The record contains the following information:

Identifier of the operation being logged. ■

Access control credentials (username) that were used for the ■

operation.

IP address of the management console that initiated the operation. ■

Timestamp of the operation. ■

Additional information specific to the operation, if applicable. ■

Posting an Event to the Log

For an enterprise to claim it maintains a security log, the sequence of records
in the audit log must match what transpired in the system. This means that
if the administrator initiated an operation that should be logged in the audit
log according to the policy, and the log entry could not be written because
the log was full (an extremely rare scenario, which as we explain later, we try
to prevent from occurring at all costs), then the operation fails. When the log
needs to be retrieved, the auditor can be certain that no auditable operations
occurred in the system other than those written in the log.

Only Intel AMT applications (which are part of the Intel AMT signed
firmware) can post events to the audit log. The Audit Log Manager inside the
Audit Logging component exposes a private interface to Intel AMT firmware
applications to post events to the log. This prevents any outside entity from
posting to the audit log and thereby trying to corrupt its integrity.

All Intel AMT applications have been designed and developed to post
events to the audit log when certain operations are perpetrated, if the audit
logging function is turned on.

Auditing Policy

The auditing policy defines which administrative operations should be logged
in the audit log. Operations can be defined in the policy as “critical” or “non-
critical.” Critical events will always be logged; if a critical operation occurs and
the log is full, the operation will fail. Non-critical operations will be logged
only if the log is at least 20 percent empty. When the log is nearly full and a

Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  279

non-critical operation occurs, the entry will not be logged and the operation
will not fail. Non-critical operations are logged as space permits. The last 20
percent of the log is reserved for critical operations only.

The definition of the auditing policy is crucial to balance security with
usability. When the auditor defines many frequent operations as critical, the
log becomes full faster, thereby needing more frequent clearing and exporting
by the auditor. On the other hand, only “critical” operations are truly audited
in the foolproof sense described above.

The Audit Trail

Due to the limited capacity of the Intel AMT flash nonvolatile memory, and
the usability concerns described earlier, the auditor needs to clear and export
the log periodically. Before clearing the log, the auditor requests an audit trail.
This is the current content of the log, signed by the firmware auditing service
in a way that can later be verified by the auditor. The auditor can store the
trail in long-term storage, such that if a breach occurs later, the old log can still
be retrieved. The signature can attest to the fact that the logs have not been
tampered with while in long-term storage. Figure 15.3 illustrates the structure
of the audit log trail.

Two potential problems may arise with this approach. The first is the
ability of the administrator deleting an entire signed trail from long-term
storage. This issue may be addressed by adding an incremental counter to
the signed trails. This allows the auditor to make sure that all signed logs
are in place. In addition, the enterprise administrator should not have access
to long-term storage, but a discussion of this issue is beyond the scope of
this book.

280  Active Platform Management Demystified Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  281

Audit Signature

Trail Start Time

Trail End Time

Trail Generation Time

Platform Identifier

Platform Network Name

Audit Trail Header

Audit Record #1

Audit Record #2

. . .

Audit Record #n

Audit Records

Audit Trail Signature

Audit Signing Certificate

Figure 15.3 Intel® AMT Audit Log Trail Structure

A second issue that may arise from this approach is the revocation of the
keying material used to sign the audit trail. It is recommended that the an
additional signature be added to the auditing software by means of a temporal
certificate being added to the trail before it is stored in long-term storage.
When this certificate is replaced periodically, the logs in long-term storage
should be re-signed. This adds another layer of authentication in case the
keying material used to sign the audit trail is compromised or revoked.

This kind of an auditing system provides very robust protections against
rogue-insider attacks.

Chapter 15: Advanced Security Mechanisms in Intel® Active Management Technology  281

 Summary
In this chapter we saw how some of the more advanced security mechanisms
help protect Intel AMT from attackers and malware. The true random
number generator increases the security of several Intel AMT components
such as higher quality session keys for TLS. The secure storage service helps
to protect sensitive data on the Intel AMT nonvolatile memory from being
stolen or changed by an attacker. The measured launch of Intel AMT pro-
vides assurance to an external entity that the Intel AMT firmware is indeed
what it claims to be. Finally we saw how the security audit log deters insiders
(such as IT technicians managing the enterprise networks) from misusing
their access privileges and harming the system. It also helps to keep track
of access violation attempts by adversaries who try to break in to the Intel
AMT subsystem. All these security protections, along with those discussed
in the previous chapter, ensure that Intel AMT is a well protected subsystem
and very resilient to malware attacks.

