
15

Chapter 2

History of
Manageability

Civilizations in decline are consistently characterized by a tendency to-
wards standardization and uniformity

— Arnold Toynbee (1889–1975)

M anageability, as a unique discipline, has historically evolved from the
growing need to configure and maintain the computer systems,

applications, and networks. As more and more of these entities provided
capabilities that could be adapted, changed, and optimized for a particular
use or preference, the need for manageability grew. With a low number
of systems, it was possible to have system administrators individually log
into the system locally and manage each system independently. However,
as these systems grew in number and became more and more complex,
administrators needed to manage a large number of resources from a central
management site. The use of remote management tools became important.
This led to development of several protocols for remote management. In
the beginning, most of these were proprietary in nature, which meant that
a system from one manufacturer could only be managed with a manage-
ment console from the same manufacturer. This led the industry to work on
interoperable standards that allow the systems from multiple manufactures
to be managed with common tools.

16 Active Platform Management Demystified Chapter 2: History of Manageability 17

 Protocol and Data Model
Remote management interfaces can be logically viewed as a combination
of a communication protocol and the payload that is exchanged via that
communication protocol.

Historically, this separation has not always been very clear or emphasized,
and some standards have treated them with a very tight binding. However,
making this logical separation has clear advantages as illustrated in Figure
2.1.

Local API

Data Model

Communication Protocol

Figure 2.1 Separation of Communication Protocol and Data Model

The communication protocol defines how the messages from one
system are to be encoded and sent to another system. It does not depend
on the contents of the messages. In much the same way that TCP/IP as
a protocol allows a reliable transmission of the packets from one network
node to another and does not concern itself with the content of the packets,
a good management protocol is agnostic of the management payload or the
data model.

Chapter 2: History of Manageability 17

The data model defines the actual content that allows the request for
specific changes to be made to the managed entity and communicated via the
communication protocol to the managed system.

The separation of the two also allows the designer of the system to provide
different access mechanisms while keeping the same management data model.
For example, a local application programming interface (API) can provide an
alternate mechanism for management while keeping the same semantics for
the data model.

 Simple Network Management Protocol
Simple Network Management Protocol (SNMP) is a management standard
that came into existence in late 1980s and achieved widespread acceptance
over the next decade. A majority of network devices, routers, switches, and
gateways have been using SNMP as the standard management protocol.

The name SNMP suggests that it is only a network protocol. However,
this standard defines more than a protocol. SNMP is based on the manager/
agent model, consisting of the manager, agent, a database of information,
managed objects, and the network protocol.

The manager and the agent communicate use a Management Information
Base (MIB) and a set of well defined commands to exchange the information.
MIBs are organized in a tree structure with each MIB given its unique place
in the tree. Within an MIB, eventually the actual management information
is defined through MIB variables. Each individual MIB variable is identified
via a unique identifier, called an Object Identifier (OID).

The OIDs are assigned based on where the MIB appears in the MIB tree,
and how the variables are defined within the MIB. For example, a standard
MIB called mib-2 is defined by iso(1).org(3).dod(6).internet(1).
mgmt(2).mib-2(1). Based on this structure, all variables in mib-2 will have
a prefix of 1.3.6.1.2.1. Within this mib-2, the complete OID of the variable
sysDescr (as shown in the following excerpt of mib-2) is 1.3.6.1.2.1.1.3.

18 Active Platform Management Demystified Chapter 2: History of Manageability 19

mib-2 OBJECT IDENTIFIER ::= { mgmt 1 }
system OBJECT IDENTIFIER ::= { mib-2 1 }
sysDescr OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “A textual description of the entity. This value
 should include the full name and version
 identification of the system’s hardware type,
 software operating-system, and networking
 software. It is mandatory that this only contain
 printable ASCII characters.”
 ::= { system 1 }

SNMP uses five basic messages (GET, GET-NEXT, GET-RESPONSE,
SET and TRAP) to communicate between the manager and the agent, as
illustrated in Figure 2.2. GET and GET-NEXT messages allow the man-
ager to request information for a specific variable. The agent receiving these
messages then uses a GET-RESPONSE message to provide the information
requested, or an error indication if the request cannot be processed. A SET
message allows the manager to change the value of the variable, and thus
change configuration data or control a particular object, such as disabling
a network interface. The agent uses the GET-RESPONSE message to
indicate the changed value or the error condition. There is no specific SET-
RESPONSE message, since the content of the messages is exactly same as in
case of GET. The TRAP message allows the agent to spontaneously inform
the manager of a critical event.

Chapter 2: History of Manageability 19

MIB Variable (OID, Value)

Manager

Agent

GET-RESPONSE, TRAP

GET, GET-NEXT, SET

Figure 2.2 SNMP Protocol Messages

The SNMP protocol is built on top of UDP/IP, and uses a simple
connectionless mechanism. The protocol is a basic query/response protocol.
TRAPs are the only packets that are sent by the agent without a request
from the manager. There is no acknowledgement defined for the TRAP
messages, so TRAPs are not necessarily guaranteed to be received by the
manager. Managers often periodically poll the agent to receive information,
in case the TRAP message is missed.

The small number of commands, simplicity, and therefore ease of use
led to the widespread usage of the protocol. However, the same simplicity is
holding back further progress of SNMP into the Internet and Web era. The
first version of SNMP had next to no security (a simple plain text community
string as a password). SNMPv2 and SNMPv3 enhanced the security but lost
the simplicity, and hence were not readily adopted. Even with what is available
in these versions, it is no match for the security and reliability demands of
today.

Newer web-based standards, as described later in this chapter, are
slowly replacing SNMP deployments. No new standards work is going on
for enhancement of SNMP.

20 Active Platform Management Demystified Chapter 2: History of Manageability 21

 Desktop Management Interface
SNMP was widely adopted in the networking segment. However, as people
started to look into managing computer systems, components within a system,
operating system components, and applications parameters, it became clear
that SNMP was not designed to do this. A local API standard was needed.
A network-based protocol was not ideal for local management by application,
and the OID structure defined by SNMP was very rigid and cumbersome to
manage thousands of variables in the system. In 1994, several system vendors
including Intel, Dell, HP, IBM, and Compaq formed a standards consor-
tium under the name of Desktop Management Task Force (which was later
renamed to Distributed Management Task Force) to embark on the task of
defining such a standard. The Desktop Management Interface (DMI) was a
result of that effort.

DMI defines the data model in a much simpler format using Management
Information Format (MIF). The MIF uses a more text-based definition that
can be parsed by a machine as well as easily read by humans. The informa-
tion is organized into groups of attributes (equivalent to SNMP variables).
The groups are uniquely identified based on their Group ID (a string). Any
number of groups can be combined together and organized in a MIF file.
The flexibility of DMI makes it very easy to organize MIF groups in any
arbitrary collection based on a specific implementation. So, if an implemen-
tation only needs one group, no other groups need be implemented. Group
attributes have a name, description, type, read/write properties, and other
information that gives enough guidance to a management application to
interpret the attribute value.

Chapter 2: History of Manageability 21

A sample MIF segment containing a single group is shown here.
Start Group
 Name = “ComponentID”
 Class = “DMTF|ComponentID|001”
 ID = 1
 Description = “This group defines the attributes “
 “common to all components. This group is required.”
 Pragma = “SNMP:1.3.6.1.4.1.412.2.1.1 ;”

 Start Attribute
 Name = “Serial Number”
 ID = 4
 Description = “Serial number for this system.”
 Access = Read-Only
 Storage = Specific
 Type = DisplayString(64)
 Value = “”
 End Attribute
 // Additional Attributes Deleted from illustration //
End Group

DMI operations are modeled along the same lines as SNMP. However,
instead of defining a protocol and on-the-wire messages, DMI defines an
API-style interface, which is much simpler and readily usable by software
programs.

The DMI API defines calls to enumerate (list) DMI Components, Groups,
Attributes, and Class names. This provides a discovery mechanism to find out
what exists. Once the management application has discovered that a specific
group is instrumented, then it can call DmiGetAttribute or DmiSetAttribute
to operate on the values of the attributes in the group. Some groups can have
multiple instances, like rows in a table. For such groups, the API provides add
and delete row operations to allow manipulations of the group instances. A
mechanism to register for a callback in case of an event is also specified.

In addition to the management API, DMI also defines a pluggable
manager and provider architecture. As shown in Figure 2.3, this centers
around a DMI Service Provider (SP) as the manager of the information, a
Component Interface (CI) for registering one or more components (also called
instrumentation) providing information, and a Management Interface (MI)
for management applications. This provides a very modular architecture,
where multiple vendors can plug in their instrumentation and multiple
management applications can use that information.

22 Active Platform Management Demystified Chapter 2: History of Manageability 23

Managed Elements

CPU

Memory

Disks

BIOS

Component
Instrumentation

Component
Instrumentation

MIF
Database

Component Interface

Management Application

DMI Service Provider

Management Interface

Figure 2.3 DMI Service Provider Infrastructure

This structured format came as a benefit to system vendors, who could
take components and instrumentations from their component suppliers and
integrate all of it into a cohesive solution. Several hardware and computer
system vendors developed instrumentations and built solutions based on DMI
infrastructure.

However, DMI’s strong definition of infrastructure and interfaces was
not warmly welcomed by Microsoft, as it was not aligned with the rest of
the Windows management infrastructure. Microsoft started working on
an alternate architecture, Windows Management Instrumentation (WMI),
which then started the foundation of next generation of DMTF standard, as
described later in this chapter.

Chapter 2: History of Manageability 23

 Wired for Management
As DMTF was defining the DMI standards on standardizing the manage-
ment information format and the infrastructure to allow consistent manage-
ment of multiple components in the platform, Intel started working with the
system vendors and component vendors to define a baseline of management
information that a system must present. Wired for Management (WFM)
defined such a baseline. The baseline was defined in terms of the DMI groups
and attributes that must be instrumented to meet WFM compliance.

In addition, mechanisms and structures were also defined (with the
effort led by BIOS vendors) for the BIOS to collect the information from
the system and put it in BIOS structures. This was defined by the SMBIOS
(System Management BIOS) specification, later standardized by DMTF.
SMBIOS structures also follow the data defined by DMI groups and
attributes definitions. However, since BIOS is under a space constraint, the
structure uses lower level bits and bytes definitions.

Another technology that came out of the WFM effort was the Preboot
eXecution Environment (PXE) specifications. The PXE environment
allowed the remote boot of a computer system from a network image. This is
often used today in a variety of enterprise environments to do a “bare-metal”
provisioning. Bare metal here refers to a system that is fresh out of the box
and has not yet been provisioned with an operating system. PXE allows the
system to be booted from a remote image, which can then in turn install the
operating system. PXE can also be used for diskless systems to always boot
from a network image.

PXE is being used today in enterprise environments, but is not scalable
and lacks security. So, it is unlikely that PXE usages will grow much unless
the scalability and security issues are resolved. Later in the book, we discuss
some alternate mechanisms that address these issues.

 Intelligent Platform Management Interface
As standards were being developed by DMTF and others to define mecha-
nisms for management applications to manage systems (that is, external
view), the server system vendors were facing another challenge. This was
to look inside the system and define efficient ways of combining hardware

24 Active Platform Management Demystified Chapter 2: History of Manageability 25

components from multiple vendors and provide a way of collecting the man-
agement information from these hardware components inside the platform
(system) via some standard management bus. Intel, Dell, HP, and NEC led
the creation of the Intelligent Platform Management Interface (IPMI) to
address this need. IPMI defines standardized, abstracted interfaces to the
platform management subsystem. IPMI includes the definition of interfaces
for extending platform management between boards within the main chassis,
and between multiple chassis.

The term platform management is used to refer to the monitoring and
control functions that are built in to the platform hardware and primarily
used for the purpose of monitoring the health of the system’s hardware. This
typically includes monitoring elements such as system temperatures, voltages,
fans, power supplies, bus errors, system physical security, and so on. It includes
automatic and manual recovery capabilities such as local or remote system
resets and power on/off operations. It includes the logging of abnormal or
out-of-range conditions for later examination and alerting where the platform
issues the alert without aid of runtime software. It also includes inventory
information that can help identify a failed hardware unit.

IPMI defines an Intelligent Platform Management Bus (IPMB), which
is an I2C-based bus that provides a standardized interconnection between
different boards within a chassis. The IPMB can also serve as a standardized
interface for auxiliary or emergency management add-in cards.

IPMI also specifies an Intelligent Chassis Management Bus (ICMB),
which provides a standardized interface for platform management informa-
tion and control between chassis.

IPMI was developed as a complementary technology to provide low-level
management information to broader frameworks based on SNMP, DMI, and
CIM (discussed later in this chapter). However, since it provided information
about hardware, and the information needed to be made available to remote
management consoles in OS-absent scenarios, it did define a simple UDP
based Remote Management Control Protocol (RMCP) to send IPMI messages
to a remote system. It also based its Platform Event Trap Format definition
on SNMP traps, which provided a mechanism to send asynchronous alerts to
management consoles.

Chapter 2: History of Manageability 25

 Alert Standard Format
While Server vendors were busy solving the platform management problem
and building a modular and scalable framework with IPMI, client vendors,
led by Intel and IBM, had been working on Alert on LAN (AOL) technology,
which initially focused on providing OS-independent alerting mechanisms,
for events like OS failures, from the LAN devices directly to the management
consoles. This technology was later standardized as Alert Standard Format
(ASF), and submitted to DMTF in due course. IPMI (for servers) and ASF
(for clients) continued to evolve together, sometimes sharing technologies, and
at other times developing parallel technologies. ASF adopted Platform Event
Trap Format defined by IPMI, and IPMI adopted Remote Management and
Control Protocol (RMCP) defined by ASF. However, the actual messages
under the covers of these common protocols (RMCP and PET) are quite
different between ASF and IPMI.

For inside the platform interfaces, ASF also defined System Management
Bus (SMBus) for connecting a small number of sensors. It is also an I2C-based
bus, but is not as extensible as IPMB. In fact, IPMB comprehends connecting
to SMBus based sensors, and is thus a superset.

 Common Information Model
SNMP was focused on managing the network devices. DMI was created to
manage components in a platform from host OS-based applications. IPMI
and ASF were more focused on inside the platform as well as out-of-band
and OS-absent management. Software, applications, and services didn’t
really have any widespread standard for management. All this, coupled with
the need to have an end-to-end management of all infrastructure, led to the
concepts of a Common Information Model (CIM), unifying all the previous
management models.

The need for end-to-end management, across multiple components, in a
distributed environment is a reality and is now a requirement. It is no longer
sufficient to manage personal computers, servers, subnets, the network core,
storage, and software in isolation. These components all interoperate to
provide connectivity and services. Information passes between these bound-
aries. Management must pass across these boundaries as well.

26 Active Platform Management Demystified Chapter 2: History of Manageability 27

These are the problems addressed by the Common Information Model.
The goals of CIM are to address both FCAPS management (fault, configura-
tion, accounting, performance, and security management) and to support the
abstraction and decomposition of services and functionality. The information
model defines and organizes common and consistent semantics for computing
and networking equipment and services. The model’s organization is based
on an object-oriented paradigm, promoting the use of inheritance, relation-
ships, abstraction, and encapsulation to improve the quality and consistency
of management data.

The value of CIM stems from its object orientation. Object-oriented
design provides support for the following capabilities that other “flat” data
formats do not allow.

Abstraction and Classification

To reduce the complexity of the problem domain, high level and funda-
mental concepts (the “objects” of the management domain) are defined.
These objects are then grouped into types (“classes”) by identifying common
characteristics and features (“properties”), relationships (“associations”) and
behavior (“methods”).

Object Inheritance

By creating subclasses from the high level and fundamental objects, additional
detail can be provided. When created, a subclass “inherits” all the information
(properties, methods, and associations) defined for its higher level objects.
Subclasses are created to put the right level of detail and complexity at the
appropriate level in the model. This can be visualized as a triangle, where the
top of the triangle is a “fundamental” object, and more detail and more classes
are defined as you move closer to the base.

Chapter 2: History of Manageability 27

Ability to Depict Dependencies, Component and Connection Associations

Relationships between objects are extremely powerful concepts. Before CIM,
management standards captured relationships in multidimensional arrays
or cross-referenced data tables. The object paradigm offers a more elegant
approach in that the relationships and associations are directly modeled.
In addition, the way that relationships are named and defined describes the
semantics of the object associations. Further semantics and information can
be provided in properties (specifying common characteristics and features) of
the associations.

Standard, Inheritable Methods

The ability to define standard object behavior (methods) is another form
of abstraction. Bundling standard methods with an object’s data is called
encapsulation. Imagine the flexibility and possibilities of a standard able to
invoke a Reset method against a hung device, regardless of the hardware,
operating system, or device.

 Summary
In this chapter we reviewed various manageability standards and technologies
from a historical perspective. The next chapter provides details on the current
state-of-the-art management technologies, such as CIM and Web Services–
based management, which are gaining widespread acceptance.

