
125

Chapter 8

Discovery of Platforms
and Information

Discovery consists of seeing what everybody has seen and thinking what
nobody has thought.

—Albert Szent-Gyorgyi (1893–1986)

The act of doing discovery in the context of Intel® Active Management
Technology (Intel AMT) means locating, connecting, and acquiring real

time information about the remote computer regardless of its power state.
Discovery is important because it’s generally the necessary starting point for
further use of Intel AMT features.

Administrator

Figure 8.1 Administrators Must First Discover the Computers on the Network
before Managing Them

126  Active Platform Management Demystified Chapter 8: Discovery of Platforms and Information  127

Performing Intel AMT discovery can be summed up in three phases:
The first phase involves scanning a network for computers with Intel AMT
support. The second phase involves obtaining the list of supported Intel AMT
features for this specific computer. The third phase is obtaining available
management information from a given computer.

When using modern management software, the first step of this process
will rarely have to occur. Most management consoles will have a database of
all managed computers that support Intel AMT. This database will grow each
time a new computer is provisioned or when a computer is added manually by
the network administrator.

The second step is crucial since many different versions of Intel AMT are
on the market and with more to come, being able to discover what version
of Intel AMT a computer supports becomes increasingly important. Lastly,
available management information about a computer is retrieved.

 Network Scanning for Intel® AMT
It is sometimes useful to scan a range of IP addresses to find computers that
support Intel AMT. Different approaches can be used with varying degrees of
efficiency. The basic technique is to attempt a TCP connection to both ports
16992 and 16993, hoping that one of these ports successfully connects.

In the case where port 16992 successfully connects, one can send a basic
HTTP get request on this connection and obtain the Intel AMT server in the
response’s SERVER field. Figure 8.2 shows a typical HTTP HEAD requests
and responses given back by the Intel AMT HTTP server.

Chapter 8: Discovery of Platforms and Information  127

HTTP Request to port 16992

HEAD / HTTP/1.1
Host: hostname.domain.com

HTTP response from Intel AMT 2.0 computer

HTTP/1.1 303 See Other
Location: http://hostname.domain.com/logon.htm
Content-Length: 0
Server: Intel(R) Active Management Technology 2.1.2

HTTP response from Intel AMT 3.0 computer

HTTP/1.1 303 See Other
Location: http://hostname.domain.com/logon.htm
Content-Length: 0
Server: Intel(R) Active Management Technology 3.0.1

Figure 8.2 Discovery Requests and Responses

Note that with Intel AMT 1.0, the version is simply omitted and must be
assumed to be 1.0 by the management console.

If port 16992 fails to connect, a connection attempt to port 16993 can be
attempted. This time a TLS session could also be attempted. A successful TCP
connection to port 16993 could indicate that Intel AMT is unprovisioned and
awaiting setup, or that Intel AMT is already set up with TLS security. If a
TLS session successfully connects, the same HTTP request performed above
can also be accomplished through TLS to determine the computer’s Intel
AMT information.

Attempting a TCP connection sweep of many IP addresses on a network
can take a very long time, especially with the connection limitations included
in Microsoft† Windows XP SP2 and Microsoft Vista1. The network sweep

1 The TCP/IP stack now limits the number of simultaneous incomplete outbound TCP connection attempts.
After the limit has been reached, subsequent connection attempts are put in a queue and will be resolved at a
fixed rate. Under normal operation, when applications are connecting to available hosts at valid IP addresses,
no connection rate-limiting will occur.—Microsoft TechNet.

128  Active Platform Management Demystified Chapter 8: Discovery of Platforms and Information  129

can be significantly speeded up by using a combination of ARP and PING.
In Figure 8.3 we have a possible state machine for network discovery of Intel
AMT computers.

Not Intel® AMT

Connect to
16992

Intel® AMT Setup
without TLS

Intel® AMT
Setup with
TLS or Not
Provisioned

Ping the Target

Failed

OK

Failed

Failed

OK

Failed

OK

OK

Connect to
16993

Intel® AMT Not
Supported

Send HTTP
GET

No Computer
Present

Figure 8.3 Basic Intel® AMT Network Scanning State Diagram

Basic discovery can be performed without having an authorized user-
name and password. Note that this state machine assumes that Intel AMT
is set to respond to PING requests, a feature that may be turned off by
the administrator. Also, if a computer accepts TCP connections on port
16993, we can’t conclude that the computer is provisioned and ready to go.
Computers that are not provisioned will expect connections on port 16993
for a provisioning server. Once we know that computer with Intel AMT is
present on the network at a given IP address, authentication is required to
complete the second part of the discovery process.

Chapter 8: Discovery of Platforms and Information  129

 Obtaining Intel® AMT Features
Once a management console has determined the presence of Intel AMT it
must use appropriate credentials (username and password or Kerberos) to
authenticate itself. This done, the second phase of the discovery involves
obtaining information necessary to talk to Intel AMT itself. Two critical pieces
of information are needed by a management console to talk to Intel AMT.
First the management console needs to determine the Intel AMT version
and second whether it communicates using the older EOI (SOAP based
External Operations Interface) messages or the newer WS-Management
based WSDL. Intel AMT 1.x and 2.x support only the older EOI while Intel
AMT 3.x to 6.x support both EOI and WS-Management, with EOI having
a progressively more limited set of features as WS-Management becomes the
standard.

As illustrated in Figure 8.4, the first call a management console should
make is the GetCoreVersion method in the SecurityAdmin SOAP service.
By analyzing the response to this call, software can determine a lot of
information. It should first be noted that the same GetCoreVersion method
is also present in the GeneralInfo service, but that service was not present in
Intel AMT 1.x, so we will use the one in SecurityAdmin. It is possible for
a computer to be in WS-Management-only mode; in this case none of the
EOI actions are available and Intel AMT will respond with a 404 “HTTP
Not Found” error. Consoles receiving this error should try to switch over to
using WS-Management on Intel AMT 3.0 or higher.

130  Active Platform Management Demystified Chapter 8: Discovery of Platforms and Information  131

SOAP Enabled
Computer

Not Found

OK

Call:
SecurityAdmin
GetCoreInfo()

WS-Management GET:
AMT_General
SettingsType

WS-Management-only
Enabled

Computer

Failed

OK

Connection
Error

Figure 8.4 Basic Intel® AMT Connection State Diagram

The authentication used by the console could have limited access to
Intel AMT features. In other words, the username and password that were
used might not have had all security realms associated with it. A console
could optionally then try to check if it is logged as administrator by calling
GetAdminAclEntry. This method returns the name of the administrator
account, generally “admin”. If the console is not logged as administrator, the
list of realms can be obtained using GetUserAclEntries method.

If at any time a call returns a forbidden error (HTTP 403) it is a good
chance that the attempted call is not allowed because the account does not
have the correct associated permission realm. The following diagram shows
a possible algorithm a console could use to determine available features. For
advanced developers, there is also a way to detect that a console is talking to
Intel AMT locally, through the LMS service. This is useful in cases when
the administrator is performing discovery on his own computer locally.
A telltale sign that this is happening is that the call to GetCoreVersion will
return an HTTP 401 unauthorized. In that case, other calls can be attempted
to determine if a local LMS connection is indeed occurring.

Information about the computer’s name, unique identifier, version, pro-
tocol, and permissions can be stored in a database for future use. When com-

Chapter 8: Discovery of Platforms and Information  131

municating again with the same computer, this information could be used
to skip the first two phases of discovery with an important caveat: Since the
Intel AMT settings of a computer could change without notice; it’s probably
good practice to perform the feature check upon each connection. After all,
software developers should not assume that their own software is the only
software being used to configure or manage Intel AMT.

 Obtaining Management Information
Finally, now that we know more about this Intel AMT computer we are
communicating with, we are in a position to start gathering useful manage-
ment information about this computer itself. Here are four basic categories
of management information that could be of use:

Asset inventory ■

Event log ■

Power, battery, and lockup state ■

Third party data storage ■

Other management information such as network filter counters, heuristic
filter state, and agent presence state will be covered in Chapter 10.

Asset Inventory

One of the most basic features of Intel AMT allows the console to read hard-
ware information about the computer that was gathered by the BIOS upon
the last boot up. Hardware assets are often the first features developers write
code for when first starting with Intel AMT since it’s one of the simplest.
These include:

Computer system ■

Base board ■

BIOS ■

Memory modules ■

Hardware modules (such as PCI cards) ■

132  Active Platform Management Demystified Chapter 8: Discovery of Platforms and Information  133

Media devices (such as disk drives) ■

Processors ■

Batteries (mobiles only) ■

Developers must be aware that it is possible for all of this information to be
completely missing in the rare case that Intel AMT was just provisioned and
no host reboot has occurred since then. In this case, software should behave
appropriately and indicate to the administrator that this information is not
currently available.

When using EOI, this information is gathered using the Hardware Asset
service. With WS-Management, similar information is obtained through
many CIM objects. Examples of how to obtain asset information with both
EOI and WS-Management are available in the Intel AMT SDK.

Hardware asset information can change when, for example, memory is
changed, a PCI card is added, or the BIOS is updated. Most of these changes
require a reboot of the computer, and the updated information will be reflected
within Intel AMT once the reboot occurs. When a change to a hardware asset
occurs, there are no events logged or notification given. It is therefore the
management console’s responsibility to occasionally get the hardware asset
inventory of each computer and compare with the previously obtained one to
see if anything has changed. Determining if such a change has occurred can
be very useful to track inventory and detect theft.

Developers often ask if USB or 1394 devices are part of the hardware
inventory and no, they are not. Listing these devices and other information
can be done using the third party data storage (3PDS) and the assistance of
OS software covered later in this chapter.

Figure 8.5 shows one of the Intel AMT Web pages for system inventory.
This information is also available to management consoles using a program-
matic interface- EOI or WS-Management interface.

Chapter 8: Discovery of Platforms and Information  133

Figure 8.5 Intel® AMT Web Page for System Inventory

Intel® AMT Event Log

This log provides basic historical information about the computer: reboots,
errors, case intrusion, and much more.

The event log can serve as a computer’s “black box” and can sometimes
be helpful in determining problems that occurred in the past. On most
platforms, the event log keeps 390 events and once full, the older events are
automatically deleted to make way for new events. For mobile computers the
event log allows network administers to get historical data about the computer
even if in the past it has not been connected to the office network.

134  Active Platform Management Demystified Chapter 8: Discovery of Platforms and Information  135

The event log is cleared when Intel AMT is first provisioned and gathers
event information from three main sources: Intel AMT, the BIOS, and system
sensors. For most computers with Intel AMT on the market today, the case
intrusion sensor, if connected, is the only sensor that will cause a logged event,
but this can change depending on the board vendor.

It is important to note that events coming from the BIOS vary greatly
from one BIOS vendor to another, and so management software should not
make assumptions about events coming from the BIOS without first checking
the computer’s BIOS vendor. There is no formal list of what vendor supports
what events. Figures 8.6 and 8.7 show the difference in the events logged
between two different BIOS vendors.

Figure 8.6 Single Reboot on a Third Party Motherboard

Chapter 8: Discovery of Platforms and Information  135

Figure 8.7 Single Reboot on an Intel Motherboard

Like the hardware asset inventory feature, the Intel AMT SDK has
samples for retrieving all events using both EOI and WS-Management.
Developers will notice that when retrieving events using EOI, the events
are ordered sequentially with the most recent event being retrieved first.
This is not the case when retrieving using WS-Management and as a result,
developers using WS-Management must sort the list of events using the
event’s time stamp before displaying the events to the administrator. The
time stamp used to mark each event is based on the Intel AMT clock
and so management consoles should take care to set the Intel AMT clock
correctly. If the computer is provisioned in enterprise mode, Intel AMT
makes use of UTC time and the console may need to perform appropriate
time zone conversion.

A few administrative operations are allowed on the event log. First, an
administrator with the proper rights can clear the event log. Since the event
log can grow to be very long and take a long time to retrieve, network admin-

136  Active Platform Management Demystified Chapter 8: Discovery of Platforms and Information  137

istrators may opt to clear the event log from time to time, especially if the log
is stored in a central database. The other management operation allowed on
the event log is a freeze. In this case, the log no longer records events. This
could be useful if the network administrator is about to perform a long series
of operations on a computer and does not need this information to be logged
into the Intel AMT event log.

One question that is often asked regarding the event log is how does an
event entry, which is a short set of numbers, convert to a string readable by
humans? A prime example of this is the Intel AMT Web UI, which has a
human readable event log.

When reading events using WS-Management, the same human-readable
string that is visible in the Web UI is provided. This string is only in English
and so does not help with internationalization and contributes to making the
event log in WS-Management very slow to retrieve.

With EOI, the event log can be retrieved much faster but no human-
readable string is provided. When building the Manageability DTK and
Manageability Commander, each new EOI event was manually compared to
the Web UI and appropriate code was added to perform the conversion. This
also has the benefit of being available in many different languages.

Because of a known bug in some versions of Intel AMT, it’s not always
possible to retrieve the event log using WS-Management and perform the
same value-to-text conversion that is possible when using EOI. As a result,
avid international users of Intel AMT Commander will notice that the event
log will be displayed in, for instance, Japanese when using EOI, but only in
English when using WS-Management.

Intel® AMT Network Alerts

Since we just covered the Intel AMT event log in some detail, it is a good place
to talk about the Intel AMT support for network alerts. A console could opt
to regularly read the event log and take note of new events, but this would be
very inefficient. Intel AMT supports network alerts. A management console
can subscribe to network alerts by placing the console’s IP address in the Intel
AMT alert subscription list along with an event filter. Once this is done, every
new event that matches the filter will cause a network alert to be sent to the
console.

Chapter 8: Discovery of Platforms and Information  137

There are two ways Intel AMT can send a network alert: SNMP traps
and WS-Eventing.

SNMP Traps

All versions of Intel AMT support sending alerts using SNMP traps. They
are UDP packets sent to port 162 of the console. The packet contains all
the basic information about the alert. Since it is UDP and not reliable, the
packet is sent three times at a few second intervals with an identical sequence
number. The management console must then remember what packets it
got from each IP address and what sequence number it already received to
remove any duplicates. Because SNMP trap packets are un-authenticated,
are sent in the clear, and can be spoofed, they are not considered secure.
One solution is to go back to the computer with Intel AMT that sent the
alert and read the event log to confirm that the alert truly came from this
computer. In any case, SNMP trap alerts should not be used if the adminis-
trator does not wish anyone on the network to see these events in plain text.
Lastly, it’s often assumed that because Intel AMT supports SNMP traps,
that it also supports SNMP. This is not the case: Intel AMT does not have
any support for SNMP.

In Figure 8.8, we show the SNMP trap viewer built into the Manage-
ability Commander tool. This screen gives a good idea of what information
is encoded in the SNMP trap packet. In Manageability Commander, this
screen is accessible through the Alert Viewer on the File menu.

138  Active Platform Management Demystified Chapter 8: Discovery of Platforms and Information  139

Figure 8.8 Manageability Commander SNMP Alert Viewer

WS-Eventing

Starting with Intel AMT 3.0, a management console using WS-Management
to talk to Intel AMT can subscribe to alerts using the much more secure
WS-Eventing standard. Unlike SNMP traps, which are rather simple, WS-
Eventing assumes that a Web server is located on the console and ready to
receive events in the form of a full HTTP or HTTPs connection. Such alerts
are much more involved since they require opening a TCP connection and
possibly performing TLS negotiation before the alert it sent to the console.
This said, the alert is much more reliable and securely sent to the console.

Chapter 8: Discovery of Platforms and Information  139

Event Log and Alert Filters

The event log and network alerts are only as useful as the information they
store or carry. In order to prevent excessive events from being logged or alerts
to be sent to a management console, Intel AMT supports the concept of an
event filter. Up to 16 of these can usually be present and by default, most or
all of these 16 slots are populated with default filters.

Event filters can be added, removed, and changed at will by an authorized
administrator. They can be used to filter the types of events to be stored in the
event log or sent as network alerts. In general, it’s best to stick to the default
filters if possible. Since, if many consoles and monitoring applications access
the same Intel AMT computer, they may conflict in how they want to use
alerts and the event log.

In EOI, the event log, event filters, and network alerts are all controlled
by the EventManager service. This service and its features are fairly straight-
forward.

Computer’s Power, Battery, and Lockup State

During the discovery phase, it’s often useful to obtain the computer’s current
power state. As we will see in this section, this little piece of information can
be very powerful.

Using EOI, the Remote Control service offers a method called
GetSystemPowerState. In WS-Management the same information is
obtained using the Power State property of the CIM_AssociatedPowerMan-
agementService object. In both cases, the management console can retrieve
the current power state of a computer. The Intel AMT SDK has a table of
possible return values, but in practice, only a few are really used:

S0 – Fully on ■

S1 – Sleeping with power on, devices off ■

S3 – Sleeping, suspend to memory ■

S4 – Hibernating, suspend to disk, auxiliary power only ■

S5 – Off, auxiliary power only ■

Retrieving the current power state can be important during discovery because
other Intel AMT operations do not makes sense when the computer is off.

140  Active Platform Management Demystified Chapter 8: Discovery of Platforms and Information  141

This information can also be used to track how effective power savings are or
make sure that a critical server has not been turned off.

In the Manageability DTK, a sample tool called Intel AMT Monitor can
be used to poll the power state of many computers every few minutes. The
tool draws a colored graph showing the power state of each computer over
time making it easy to determine which computers are staying on all night
and which are saving the most power. Intel AMT can’t tell the administrator
exactly how much power is being used by a given computer; the exact power
use of a computer changes depending on many factors including disk usages
and CPU work load. Still, if we give each power state a relative power efficiency
score, we can build a tool that computes the overall energy savings of an entire
network of computers with Intel AMT. All of this is thanks to Intel AMT
allowing us to query the computer’s power state over the network without
waking the computer up.

Querying for the power state also gives us two other pieces of interesting
information. Two bits in the GetSystemPowerState method allow us to
determine if a laptop is running on battery power and if a computer is locked
up. The battery power bit is not always implemented by vendors, but when
on, it should give the administrator a little warning not to perform operations
on this computer that may excessively drain the battery. The lockup bit is
actually implemented in cooperation with the Intel MEI driver running in
the OS. If for any reason the Intel MEI driver fails to shutdown correctly,
Intel AMT will turn on this bit, indicating a possible incorrect shutdown of
the computer.

 Third Party Data Storage (3PDS)
So Intel AMT does not provide all of this information you want when the
computer is powered off? No problem. Third Party Data Storage allows
developers to extend what information is available by allowing software to
store data into the computer’s onboard flash for later retrieval by a trusted
administrator.

Chapter 8: Discovery of Platforms and Information  141

Imagine a small OS agent that starts each time the computers boots into
the operating system and stores such things as:

List of connected USB devices ■

Installed software ■

Summary of last blue screen kernel dump ■

Currently logged user ■

OS boot up and shutdown times ■

OS errors ■

Location of the latest backup ■

Such information would be stored periodically in the computer’s flash
memory and an administrator could retrieve this set of OS level historical
information and use it to diagnose current problems. If a computer has a
critical error, information contained in the flash could indicate what was
going on before the error occurred. It could also be used for USB hardware
and general software asset inventory. Being able to read from the platform’s
flash where to get the latest backup in the case of a complete hard disk failure
could also be a lifesaver.

In any way you chose to use 3PDS, there are a few things to know before
starting to write software. First, Intel AMT has 192 KB2 of flash space
available. This space must be shared between all applications that want to
make use of it and so, Intel AMT includes a space arbitration system of
sorts, to make sure no single application is getting greedy.

Because the way by which local applications read and write to 3PDS is
very different on AMT 1.x3 compared to AMT 2.x and beyond, it is generally
accepted for applications to only support 3PDS in AMT 2.x and beyond.

The 3PDS space is allocated to applications in pages of 4 KB. A single
block of space can be composed of one or more pages of flash memory. When
allocating and writing into a block, the unused space is simply not written into.
When reading back the block, the unused space can contain leftover data. As
a result, it’s important that an application zero out the leftover space or make

2 Intel® AMT 1.x only has 96 KB of 3PDS space available.

3 Intel® AMT 1.x uses the Intel MEI driver to locally read and write to 3PDS. These 3PDS Intel MEI
commands are not supported in Intel AMT 2.x and beyond which uses EOI/WS-Management through LMS
instead.

142  Active Platform Management Demystified Chapter 8: Discovery of Platforms and Information  143

sure to indicate how much data has actually been stored in the beginning of
the block to make reading back the data easier. Once a block is allocated, the
entire block must be read or written. It is not possible for software to write
into only a portion of the block without rewriting the entire block.

Since 3PDS is flash storage, it not as fast as regular memory. As a result,
it’s generally recommended to start reading or writing to 3PDS on a separate
thread and the larger the block, the longer it will take to read or write. Because
of the limited space and slower speed, compressing the data before storing
it into 3PDS is highly recommended. For example: the GZIP compression
methods available in Microsoft .NET makes this very easy.

One of the biggest mistakes developers and administrators make when
using 3PDS is to assume that 3PDS is freely accessible like a file system and
the Microsoft Windows registry. Before starting to use 3PDS, users must have
a good understanding of the 3PDS allocation system. Even if Intel AMT is
provisioned and accessible, if not set up by the administrator first, it can’t be
accessed locally at all.

 3PDS Allocation System
In order to properly use 3PDS, the administrative console must first set up
3PDS correctly. This operation can only be performed remotely. It can’t be
done locally, even if the administrator username and password is known.

First, the administrator must set up to four “Enterprises.” These are top
level administrative domains; if a computer is owned and operated by a single
entry, there should generally be only one enterprise. With Intel, we would
use the string “Intel” or “Intel IT” as an enterprise name. Having many
different enterprise strings means that a single computer can be administered
by different entities without conflict. Without at least one enterprise, no data
can be stored into 3PDS.

Next, 3PDS has a list of partner vendors and applications. By default
this list is populated with a few well known industry management software
vendors. The partner list can be deleted and/or changed by the remote
administrator. The partner list limits the maximum amount of flash pages
that can be allocated by a single application. If an application is not on this
list, it is limited by a separate non-partner global setting. This setting is
generally set to 2 pages or 8 KB. The partner and non-partner settings may

Chapter 8: Discovery of Platforms and Information  143

allow for more than the total 192 KB of available flash space to be used, but
this is okay since it’s unlikely that all of the applications will each use all of
their maximum allowed space.

Once the enterprises, partner table, and non-partner settings are all set,
allocation, deletion, reading and writing of blocks can then start. Before
performing any of these operations to blocks locally or remotely, the soft-
ware must first register to 3PDS. This is a separate step from the Intel AMT
connection with the username and password, which must always be done
first. The 3PDS registration is performed using the RegisterApplication
call. It must include the enterprise, vendor name, application name, and
a unique identifier for this instance of the software. Once registered, each
created block is be tagged with the information of the owner who created the
block. This information is used to calculate allocation limits and determine
who has read and write access to this block. Each block in 3PDS has the
following attributes:

Enterprise (string) ■

Application Vendor (string) ■

Application Name (string) ■

Block Name (string) ■

Owner (GUID) ■

Number of 4-KB pages ■

Permissions set ■

Visibility (visible or hidden) ■

Block permissions allow the application to set who has the rights to read and
write into this block, based on their own 3PDS registration. For example, this
block can be set to be read by anyone who is registered with the same vendor
name.

When the block visibility is set to false, only the owner of this block can
see it. As a result, only an application that registers with the same enterprise,
vendor, application, and GUID will be able to see this block.

Probably the best way to learn about this is to use Intel AMT Commander
remotely and Intel AMT Outpost locally to get hands-on experience with
these settings. The Manageability DTK also provides a set of tutorial videos
that walk you through the steps of using 3PDS. As users get more familiar

144  Active Platform Management Demystified Chapter 8: Discovery of Platforms and Information  145

with how 3PDS works, we often get this following question: If registration is
needed to read and write blocks for a given vendor and application, why is it
the Intel AMT Commander can see reads and writes of all of the blocks in
3PDS regardless of the owner?

Intel AMT Commander will first enumerate all of the enterprises, vendors
and applications that have been registered into 3PDS. It will then register as
each of them, registering as many times as it needs, using the software UUID
of all zeros. This trick allows Commander to gain access to most of the blocks
in 3PDS. Still, this trick has its limits. If a local application sets a block to be
hidden, Commander will no longer see it. Also, a local application can set
block permissions to allow only the owner of the block to read and write the
block, effectively locking Commander out.

Is it not possible to register both locally and remotely using the same
enterprise, vendors, application, and UUID. This is why Commander will
always use a GUID of all zeros4 and Intel AMT Outpost by default uses a
GUID of all zeros and a 1 at the end5. If a UUID is used locally, it later can’t
be used remotely and vice-versa. Any attempt will result in an error.

At this point, we want to dispel myths about 3DPS that come up from
time to time. Intel AMT never looks at or interprets the 3PDS data. As a result,
you can’t put code into 3PDS and have Intel AMT execute it. Intel AMT will
also never read or write data or results into 3PDS unless it’s instructed to do
so by local or remote software. If the data stored into 3PDS is highly sensitive
and should not be read by other applications, the application must encrypt the
data itself. 3PDS should not be considered to be a security storage area like the
storage area provided by tamper-resistant modules.

To conclude with 3PDS, you may be thinking of placing an MP3 file
into 3PDS so that you can stream music while your computer is off! The
192 KB space limitation would severely limit that type of usage, but it was a
good idea while it lasted. Other ideas include placing instructions into 3DPS
that could be read and executed by an OS agent the next time the computer
is booted up. You could also push results such as “the backup is complete” or
“finished computing this weather simulation” into 3PDS just before putting
the computer to sleep. Regardless of what you chose to do with 3PDS, it is one
of the Intel AMT features with many opportunities for innovation.

4 Intel® AMT Commander always uses {00000000-0000-0000-0000-000000000000}

5 Intel® AMT Outpost uses by default {00000000-0000-0000-0000-000000000001}

Chapter 8: Discovery of Platforms and Information  145

 Summary
In this chapter we reviewed how to scan, connect, and gather data about a
computer using Intel AMT. When done correctly, a management console
should be able to handle connections to previously unknown computers
regardless of the Intel AMT version or communication standard used and
correctly acquire information about this computer. Discovery is also a re-
quired step before moving into the two following chapters where Intel AMT
will be used to actively protect and heal a computer remotely.

